Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Structure ; 24(3): 437-47, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26876098

ABSTRACT

Members of the Toll-like receptor and interleukin-1 (IL-1) receptor families all signal via Toll/IL-1R (TIR) domain-driven assemblies with adaptors such as MyD88. We here combine the mammalian two-hybrid system MAPPIT and saturation mutagenesis to complement and extend crystallographic and nuclear magnetic resonance data, and reveal how TIR domains interact. We fully delineate the interaction sites on the MyD88 TIR domain for homo-oligomerization and for interaction with Mal and TLR4. Interactions between three sites drive MyD88 homo-oligomerization. The BB-loop interacts with the αE-helix, explaining how BB-loop mimetics inhibit MyD88 signaling. The αC'-helix interacts symmetrically. The MyD88 TIR domains thus assemble into a left-handed helix, compatible with the Myddosome death domain crystal structure. This assembly explains activation of MyD88 by Mal and by an oncogenic mutation, and regulation by phosphorylation. These findings provide a paradigm for the interaction of mammalian TIR domains.


Subject(s)
Mutation , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Myeloid Differentiation Factor 88/chemistry , Myeloid Differentiation Factor 88/genetics , Binding Sites , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Myeloid Differentiation Factor 88/metabolism , Phosphorylation , Protein Binding , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Toll-Like Receptor 4/metabolism
3.
Phys Chem Chem Phys ; 16(32): 17196-205, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25012493

ABSTRACT

As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.

4.
J Chem Phys ; 140(13): 134105, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24712778

ABSTRACT

A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

5.
J Pharm Biomed Anal ; 96: 1-9, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24705455

ABSTRACT

Chemical modification of biomolecules like the introduction of metal-chelators into proteins can lead to heterogeneous product formation. The nature and extend of the modification is important in interpreting the biological properties of the bioconjugate, given their possible influence on the pharmacokinetics as well as on the binding affinity to the target. The present study describes the synthesis and analytical characterization of somatropin modified on its lysine's ɛ-amino groups with the acylating chelator S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA). Direct separation and identification techniques (i.e. RP-MS and CE-MS) and peptide mapping after trypsin and chymotrypsin digestion demonstrated that the use of higher amounts of p-SCN-Bn-NOTA during synthesis leads to a complex product composition with higher order substitution degrees (i.e. multiple NOTA-moieties per somatropin molecule), as well as the presence of different position isomers. From the nine lysine (Lys) residues in somatropin, Lys-70 was experimentally found to be the modification hotspot under our synthesis conditions (pH=9.0). This was supported by the in silico calculated lowest pKa value of 8.3 for Lys-70. Based on the crystal structure of somatropin in complex with the extracellular parts of the growth hormone receptor, the Lys-70 residue is positioned outside the binding pockets and will therefore not directly interfere with receptor binding. Gallium chelation by NOTA-somatropin resulted in a 100% complexation. The synthesis of NOTA-somatropin using p-SCN-Bn-NOTA and somatropin under our operational conditions is therefore a suitable synthesis procedure for the production of a target-specific radiopharmaceutical for further investigation toward treatment and visualization of growth hormone-specific cancers.


Subject(s)
Heterocyclic Compounds/chemistry , Human Growth Hormone/chemistry , Isothiocyanates/chemistry , Chelating Agents/chemistry , Computer Simulation , Crystallization , Heterocyclic Compounds, 1-Ring , Hydrogen-Ion Concentration , Peptide Mapping/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry
6.
Nat Struct Mol Biol ; 21(4): 375-82, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24632570

ABSTRACT

Thymic stromal lymphopoietin (TSLP), a cytokine produced by epithelial cells at barrier surfaces, is pivotal for the development of widespread chronic inflammatory disorders such as asthma and atopic dermatitis. The structure of the mouse TSLP-mediated signaling complex reveals how TSLP establishes extensive interfaces with its cognate receptor (TSLPR) and the shared interleukin 7 receptor α-chain (IL-7Rα) to evoke membrane-proximal receptor-receptor contacts poised for intracellular signaling. Binding of TSLP to TSLPR is a mechanistic prerequisite for recruitment of IL-7Rα to the high-affinity ternary complex, which we propose is coupled to a structural switch in TSLP at the crossroads of the cytokine-receptor interfaces. Functional interrogation of TSLP-receptor interfaces points to putative interaction hotspots that could be exploited for antagonist design. Finally, we derive the structural rationale for the functional duality of IL-7Rα and establish a consensus for the geometry of ternary complexes mediated by interleukin 2 (IL-2)-family cytokines.


Subject(s)
Cytokines/chemistry , Signal Transduction/immunology , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Cytokines/immunology , Cytokines/metabolism , Humans , Interleukin-2/metabolism , Interleukin-2/physiology , Mice , Models, Immunological , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, Interleukin-7/metabolism , Receptors, Interleukin-7/physiology , Thymic Stromal Lymphopoietin
7.
Phys Chem Chem Phys ; 16(6): 2475-82, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24356118

ABSTRACT

The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.


Subject(s)
Alanine/chemistry , Free Radicals/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , Oxidation-Reduction , Radiochemistry
8.
Phys Chem Chem Phys ; 15(24): 9615-9, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23673612

ABSTRACT

A DFT study of radiation induced alkoxy radical formation in crystalline α-l-rhamnose has been performed to better understand the processes leading to selective radical formation in carbohydrates upon exposure to ionizing radiation at low temperatures. The apparent specificity of radiation damage to carbohydrates is of great interest for understanding radiation damage processes in the ribose backbone of the DNA molecule. Alkoxy radicals are formed by deprotonation from hydroxyl groups in oxidized sugar molecules. In α-l-rhamnose only one alkoxy radical is observed experimentally even though there are four possible sites for alkoxy radical formation. In the present work, the origin of this apparently specific action of radiation damage is investigated by computationally examining all four possible deprotonation reactions from oxygen in the oxidized molecule. All calculations are performed in a periodic approach and include estimates of the energy barriers for the deprotonation reactions using the Nudged Elastic Band (NEB) method. One of the four possible radical sites is ruled out due to the lack of a suitable proton acceptor. For the other three possible sites, the reaction paths and energy profiles from primary cationic radicals to stable, neutral alkoxy radicals are compared. It is found that deprotonation from one site (corresponding to the experimentally observed radical) differs from the others in that the reaction path is less energy demanding. Hence, it is suggested that the alkoxy radical formation is not necessarily site specific, but that the observed radical is formed in much greater abundance than the others due to the different energetics of the processes and reaction products.

9.
Structure ; 21(4): 528-39, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23478061

ABSTRACT

The discovery that hematopoietic human colony stimulating factor-1 receptor (CSF-1R) can be activated by two distinct cognate cytokines, colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34), created puzzling scenarios for the two possible signaling complexes. We here employ a hybrid structural approach based on small-angle X-ray scattering (SAXS) and negative-stain EM to reveal that bivalent binding of human IL-34 to CSF-1R leads to an extracellular assembly hallmarked by striking similarities to the CSF-1:CSF-1R complex, including homotypic receptor-receptor interactions. Thus, IL-34 and CSF-1 have evolved to exploit the geometric requirements of CSF-1R activation. Our models include N-linked oligomannose glycans derived from a systematic approach resulting in the accurate fitting of glycosylated models to the SAXS data. We further show that the C-terminal region of IL-34 is heavily glycosylated and that it can be proteolytically cleaved from the IL-34:hCSF-1R complex, providing insights into its role in the functional nonredundancy of IL-34 and CSF-1.


Subject(s)
Interleukins/chemistry , Macrophage Colony-Stimulating Factor/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Humans , Microscopy, Electron , Scattering, Small Angle , Tandem Mass Spectrometry
10.
Chemistry ; 18(26): 8120-9, 2012 Jun 25.
Article in English | MEDLINE | ID: mdl-22614919

ABSTRACT

The halochromism in solution of a prototypical example of an azo dye, ethyl orange, was investigated by using a combined theoretical and experimental approach. Experimental UV/Vis and Raman spectroscopy pointed towards a structural change of the azo dye with changing pH value (in the range pH 5-3). The pH-sensitive behavior was modeled through a series of ab initio computations on the neutral and various singly and doubly protonated structures. For this purpose, contemporary DFT functionals (B3LYP, CAM-B3LYP, and M06) were used in combination with implicit modeling of the water solvent environment. Static calculations were successful in assigning the most-probable protonation site. However, to fully understand the origin of the main absorption peaks, a molecular dynamics simulation study in a water molecular environment was used in combination with time-dependent DFT (TD-DFT) calculations to deduce average UV/Vis spectra that take into account the flexibility of the dye and the explicit interactions with the surrounding water molecules. This procedure allowed us to achieve a remarkable agreement between the theoretical and experimental UV/Vis spectrum and enabled us to fully unravel the pH-sensitive behavior of ethyl orange in aqueous environment.

11.
Peptides ; 33(2): 272-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22222609

ABSTRACT

Different iodinated mouse obestatin peptides have been characterized toward their in vitro stability in the main metabolic compartments plasma, liver and kidney. Using HPLC-UV for quantification, significant differences in the degradation kinetics of the iodinated peptides, arising from both enzymatic proteolysis and dehalogenation, were found when compared to the native, unmodified peptide. HPLC-MS/MS analysis demonstrated that the cleavage sites were dependent upon the biological matrix and the location of the amino acid residue incorporating the iodine atom(s). The degrading proteases were found to target peptide bonds further away from the iodine incorporation, while proteolytic cleavages of nearby peptide bonds were more limited. Diiodinated amino acid residue containing peptides were found to be more susceptible to deiodination than the mono-iodinated derivative. In plasma, the percentage of peptide degradation solely attributed to deiodinase activity after 20 min incubation reached up to 25% for 2,5-diiodo-H(19)-obestatin compared to 20% and only 3% for (3,5-diiodo-Y(16))- and (3-iodo-Y(16)) obestatin, respectively. Hence, our results demonstrate that the different iodinated peptides pose significantly different metabolization properties and thus, also different biological activities are expected for peptides upon iodination.


Subject(s)
Iodine/metabolism , Peptide Hormones/metabolism , Tissue Extracts/metabolism , Amino Acid Sequence , Animals , Biotransformation , Chromatography, High Pressure Liquid , Half-Life , Iodine Radioisotopes , Isotope Labeling , Kidney/metabolism , Kinetics , Liver/metabolism , Mice , Molecular Sequence Data , Peptide Hydrolases/metabolism , Plasma , Protein Stability , Proteolysis , Tandem Mass Spectrometry
12.
J Chem Theory Comput ; 8(2): 661-76, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-26596614

ABSTRACT

The concept of the atomic charge is extensively used to model the electrostatic properties of proteins. Atomic charges are not only the basis for the electrostatic energy term in biomolecular force fields but are also derived from quantum mechanical computations on protein fragments to get more insight into their electronic structure. Unfortunately there are many atomic charge schemes which lead to significantly different results, and it is not trivial to determine which scheme is most suitable for biomolecular studies. Therefore, we present an extensive methodological benchmark using a selection of atomic charge schemes [Mulliken, natural, restrained electrostatic potential, Hirshfeld-I, electronegativity equalization method (EEM), and split-charge equilibration (SQE)] applied to two sets of penta-alanine conformers. Our analysis clearly shows that Hirshfeld-I charges offer the best compromise between transferability (robustness with respect to conformational changes) and the ability to reproduce electrostatic properties of the penta-alanine. The benchmark also considers two charge equilibration models (EEM and SQE), which both clearly fail to describe the locally charged moieties in the zwitterionic form of penta-alanine. This issue is analyzed in detail because charge equilibration models are computationally much more attractive than the Hirshfeld-I scheme. Based on the latter analysis, a straightforward extension of the SQE model is proposed, SQE+Q(0), that is suitable to describe biological systems bearing many locally charged functional groups.

13.
Phys Chem Chem Phys ; 13(41): 18638-46, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21927735

ABSTRACT

The calculation of the g tensor of the main (+)NH(3)-˙CH-COO(-) radiation-induced radical in solid-state α-glycine presents a real challenge to computational methods. Density functional calculations of this spectroscopic property struggle with its small anisotropy and the zwitterionic nature of the amino acids in the crystal of this seemingly simple system. Here, several factors influencing the calculated g tensor are examined by comparing with experimental data. The extent of the molecular environment is varied in both a cluster and a periodic approach and dynamic calculations are performed to account for temperature effects. The latter does not necessarily lead to a better agreement with experiment than a static calculation. Application of a periodic approach is straightforward, but an all-electron scheme clearly is favorable. In a cluster approach, the selected basis set and density functional are of less importance, provided a hybrid functional is used to prevent cluster boundary effects. The applied spin-orbit coupling operators and proper treatment of the gauge origin of the magnetic vector potential also seem to be less critical than in other, similar molecular systems. But a careful selection of the cluster size proves to be essential for this glycine radical system. The calculated g tensor varies significantly with increasing cluster size, yielding only a good agreement with experiment when 5-7 glycine molecules in the immediate environment of the central glycine radical are incorporated. Further expansion of the cluster size can even lead to an essentially incorrect description of the radical in the condensed phase, indicating that bigger clusters can become unbalanced.


Subject(s)
Free Radicals/chemistry , Glycine/chemistry , Temperature
14.
J Phys Chem B ; 114(49): 16655-65, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21090702

ABSTRACT

The neutral and anionic semiquinone radicals of the flavin adenine dinucleotide (FAD) cofactor noncovalently bound in glucose oxidase from A. niger are examined with the aid of QM/MM molecular modeling methods, enabling complete inclusion of the protein environment. Recently, the electron paramagnetic resonance (EPR) characteristics, the anisotropic g tensor and all the significant hyperfine couplings, of these flavoprotein radicals were determined at high resolution (J. Phys. Chem. B 2008, 112, 3568). A striking difference between the neutral and anionic radical forms was found to be a shift in the g(y) principal value. Within the QM/MM framework, geometry optimization and molecular dynamics simulations are combined with EPR property calculations, employing a recent implementation by some of the authors in the CP2K software package. In this way, spectroscopic characteristics are computed on the fly during the MD simulations of the solvated protein structure, mimicking as best as possible the experimental conditions. The general agreement between calculated and experimental EPR properties is satisfactory and on par with those calculated with other codes (Gaussian 03, ORCA). The protonation state of two histidines (His559 and His516) at the catalytic site of this flavoprotein is found to have a remarkable influence on the isotropic hyperfine coupling of one of the methyl groups on the neutral FAD radical, which is consistent with experimental findings in other flavoproteins (J. Biol. Chem. 2007, 282, 4738). Furthermore, the shift in the g(y) principal values between the neutral and anionic radicals is well reproduced by QM/MM simulations. Incorporation of at least the nearest protein environment of the cofactor radicals proves to be vital for a correct reproduction, indicating that this shift is a global feature of the protein rather than a local one. In addition, QM/MM techniques are used to make a prediction of relative angles between important spectroscopic principal directions, which are not readily determined by conventional EPR experiments. Significantly, the directions of the g(x) and the g(y) components of the g-tensor that lie in the plane of the isoalloxazine moiety are rotated by approximately 59° between the neutral and the anionic radicals.


Subject(s)
Flavoproteins/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Structure
15.
Acta Crystallogr B ; 66(Pt 6): 662-77, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21099028

ABSTRACT

The crystal structures of eight cyclodipeptides are determined, incorporating pipecolic acid or proline and phenylalanine or N-methyl phenylalanine. This set of structures allows the evaluation of the effects on molecular conformation and crystal packing of imino acid ring-size, relative configuration of the two amino acids, and N-methylation. In the non-methylated compounds, hydrogen-bonding interactions form one-dimensional motifs that dominate the packing arrangement. Three compounds have more than one symmetry-independent molecule in the asymmetric unit (Z' > 1), indicative of a broad and shallow molecular energy minimum. Density functional theory calculations reveal the interplay between inter- and intramolecular factors in the crystals. Only for the N-methylated compounds do simulations of the molecules in the isolated state succeed to reproduce the observed crystallographic conformations. Puckering of the diketopiperazine ring and the deviation from planarity of the amide bonds are not reproduced in the remaining compounds. Cluster in vacuo calculations with a central cyclodipeptide molecule surrounded by hydrogen-bound molecules establish that hydrogen bonding is of major importance but that other intermolecular interactions must also contribute substantially to the crystal structure. More advanced periodic calculations, incorporating the crystallographic environment to the full extent, are necessary to correctly describe all the conformational features of these cyclodipeptide crystals.


Subject(s)
Amino Acids/chemistry , Dipeptides/chemistry , Peptides, Cyclic/chemistry , Phenylalanine/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Conformation
16.
J Phys Chem A ; 114(47): 12417-26, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21049978

ABSTRACT

Stable free radical formation in fructose single crystals X-irradiated at room temperature was investigated using Q-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three main crystallographic planes allowed an unambiguous determination of 12 proton HFC tensors. From the EIE studies, these hyperfine interactions were assigned to six different radical species, labeled F1-F6. Two of the radicals (F1 and F2) were studied previously by Vanhaelewyn et al. [Vanhaelewyn, G. C. A. M.; Pauwels, E.; Callens, F. J.; Waroquier, M.; Sagstuen, E.; Matthys, P. J. Phys. Chem. A 2006, 110, 2147.] and Tarpan et al. [Tarpan, M. A.; Vrielinck, H.; De Cooman, H.; Callens, F. J. J. Phys. Chem. A 2009, 113, 7994.]. The other four radicals are reported here for the first time and periodic density functional theory (DFT) calculations were used to aid their structural identification. For the radical F3 a C3 carbon centered radical with a carbonyl group at the C4 position is proposed. The close similarity in HFC tensors suggests that F4 and F5 originate from the same type of radical stabilized in two slightly different conformations. For these radicals a C2 carbon centered radical model with a carbonyl group situated at the C3 position is proposed. A rather exotic C2 centered radical model is proposed for F6.

17.
J Phys Chem A ; 114(25): 6879-87, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20527925

ABSTRACT

The properties and functions of (bio)molecules are closely related to their molecular conformations. A variety of methods are available to sample the conformational space at a relatively low level of theory. If a higher level of theory is required, the computational cost can be reduced by selecting a uniformly distributed set of conformations from the ensemble of conformations generated at a low level of theory and by optimizing this selected set at a higher level. The generation of conformers is performed using molecular dynamics runs which are analyzed using the MD-Tracks code [J. Chem. Inf. Model. 2008, 48, 2414]. This article presents a Kennard-Stone-based algorithm, with a distance measure based on the distance matrix, for the selection of the most diverse set of conformations. The method has been successfully applied to macrocyclic alkenes. The correct thermodynamic stability of the double-bond isomers of a flexible macrocyclic alkene containing two chiral centers is reproduced. The double-bond configuration has a limited effect on the conformation of the whole macrocycle. The chirality of the stereocenters has a larger effect on the molecular conformations.


Subject(s)
Algorithms , Alkenes/chemistry , Macrocyclic Compounds/chemistry , Molecular Conformation , Stereoisomerism , Temperature , Thermodynamics
18.
Phys Chem Chem Phys ; 12(31): 8733-6, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20559598

ABSTRACT

Using periodic DFT calculations, it is concluded that the stable radiation-induced alanine radical most probably is the result of reductive deamination and protonation of the detached amino group, yielding an NH(4)(+) ammonium ion and a negatively charged radical.


Subject(s)
Alanine/chemistry , Free Radicals/chemistry , Radiation, Ionizing , Electron Spin Resonance Spectroscopy , Protons , Quaternary Ammonium Compounds/chemistry
19.
J Phys Chem B ; 114(1): 666-74, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20055527

ABSTRACT

Electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) measurements on sucrose single crystals at 10 K after in situ X irradiation at this temperature reveal the presence of at least nine different radical species. Nine proton hyperfine coupling tensors were determined from ENDOR angular variations and assigned to six of these species (R1-R6) using EIE. Spectral simulations indicate that four of those (R1-R3 and R6) dominate the EPR absorption. Assisted by periodic density functional theory (DFT) calculations, R1 and R2 are identified as H-abstracted C1- and C5-centered radicals, R3 is tentatively assigned to an H-abstracted C6-centered radical, and R6 is identified as an alkoxy radical where the abstracted hydroxy proton has migrated to a neighboring OH group via intermolecular proton transfer. The latter radical had been characterized and identified in a previous study, but the present DFT calculations provide additional insight into its conformation and particular properties. This study provides the first step in unraveling the formation mechanism of the stable sucrose radicals detected after room-temperature irradiation and contributes to the understanding of the initial stages of radiation damage to solid-state carbohydrates.


Subject(s)
Electron Spin Resonance Spectroscopy , Sucrose/chemistry , Oxidation-Reduction , Temperature , X-Ray Diffraction
20.
J Comput Chem ; 31(5): 994-1007, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-19813181

ABSTRACT

Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein.


Subject(s)
Algorithms , Spectrophotometry, Infrared/methods , Spectrum Analysis, Raman/methods , Alkaloids/chemistry , Amines/chemistry , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Cinchona/chemistry , Computer Simulation , Models, Molecular , Quinine/chemistry , Spectrophotometry, Infrared/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...