Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Nutr Prev Health ; 6(2): 234-242, 2023.
Article in English | MEDLINE | ID: mdl-38618530

ABSTRACT

Women's roles in the US military have progressively changed over the past several decades. Previously women were barred from combat roles. Recent change in policy allow women into combat roles in the Marine Corps, and this has led to women being trained for combat specialties. Objectives: This observational cross-sectional study describes body composition and performance values for modern Marine Corps women. Methods: Volunteers were 736 Marine women who were assessed for body composition and physical performance; (age 29.5±7.3 (18-56) years; height 163.6±6.8 (131.0-186.1) cm; body mass 68.3±9.2 (42.0-105.3) kg; years in the military 8.9±6.8 (0.5-37) years-in-service). Body composition measures were obtained using dual-energy X-ray absorptiometry and single-frequency bioelectrical impedance analyses. Performance measures were obtained from official physical and combat fitness test scores (PFT; CFT) as well as from data on measured countermovement jumps (CMJ) on a calibrated force platform. Results: Mean body composition metrics for Marine women were: 47.5±5.7 fat free mass (FFM) (kg), 30.1%±6.4% body fat (%BF), 2.6±0.3 bone mineral content (kg), and 25.5±2.8 body mass index (kg/m2); performance metrics included 43.4±3.2 maximal oxygen uptake (VO2max; mL.kg.min), 22.4±7.1 CMJ height (cm) and 2575±565.2 CMJ peak power (W). Data showed strong correlations (r) (≥0.70) between PFT and VO2max scores (0.75), and moderate correlations (≥0.50) between CFT and VO2max scores (0.57), CFT and PFT scores (0.60), FFM and CMJ peak power (W) (0.68), and %BF to VO2max (-0.52), PFT (-0.54), CMJ-Ht (-0.52) and CMJ relative power (W/kg) (-0.54). Conclusion: Modern Marine women are both lean and physically high performing. Body composition is a poor predictor of general physical performance.

2.
Front Physiol ; 13: 868627, 2022.
Article in English | MEDLINE | ID: mdl-35432005

ABSTRACT

Purpose: Body composition assessment methods are dependent on their underlying principles, and assumptions of each method may be affected by age and sex. This study compared an abdominal circumference-focused method of percent body fat estimation (AC %BF) to a criterion method of dual-energy x-ray absorptiometry (DXA), and a comparative assessment with bioelectrical impedance (BIA), in younger (≤30 years) and older (>age 30 years) physically fit (meeting/exceeding annual US Marine Corps fitness testing requirements) men and women. Methods: Fit healthy US Marines (430 men, 179 women; 18-57 years) were assessed for body composition by DXA (iDXA, GE Lunar), anthropometry, and BIA (Quantum IV, RJL Systems). Results: Compared to DXA %BF, male AC %BF underestimated for both ≤30 and >30 years age groups (bias, -2.6 ± 3.7 and -2.5 ± 3.7%); while female AC %BF overestimated for both ≤30 and >30 years age groups (2.3 ± 4.3 and 1.3 ± 4.8%). On an individual basis, lean men and women were overestimated and higher %BF individuals were underestimated. Predictions from BIA were more accurate and reflected less relationship to adiposity for each age and sex group (males: ≤30, 0.4 ± 3.2, >30 years, -0.5 ± 3.5; women: ≤30, 1.4 ± 3.1, >30 years, 0.0 ± 3.3). Total body water (hydration) and bone mineral content (BMC) as a proportion of fat-free mass (FFM) remained consistent across the age range; however, women had a higher proportion of %BMC/FFM than men. Older men and women (>age 30 years) were larger and carried more fat but had similar FFM compared to younger men and women. Conclusion: The AC %BF provides a field expedient method for the US Marine Corps to classify individuals for obesity prevention, but does not provide research-grade quantitative body composition data.

3.
BMJ Nutr Prev Health ; 5(2): 254-262, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36619314

ABSTRACT

Bioelectrical impedance analysis (BIA) provides a practical method of body composition estimation for field research and weight management programmes, with devices and algorithms that have improved in recent years. We compared suitability of a commercial BIA system that uses multi-frequency-based proprietary algorithms (InBody 770, Cerritos, California, USA) and a laboratory-based validated single-frequency system (Quantum IV, RJL Systems, Clinton Township, Michigan, USA) with dual-energy X-ray absorptiometry (DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA). Volunteers included fit non-obese active duty US Marines (480 men; 315 women), assessed by DXA and the two BIA systems. Both RJL and InBody BIA devices predicted DXA-based fat-free mass (FFM) (mean absolute error (MAE) 2.8 and 3.1 kg, respectively) and per cent body fat (%BF) (MAE 3.4% and 3.9%, respectively), with higher correlations from the InBody device (r2=0.96 (%BF) and 0.84 (FFM)) versus the RJL (r2=0.92 (%BF) and 0.72 (FFM)). InBody overpredicted FFM (bias +2.7, MAE 3.1 kg) and underpredicted %BF (bias -3.4 and MAE 3.9%) versus the RJL. A 3% correction factor applied to the InBody device results provided values very close to the DXA measurements. These findings support the application of modern BIA systems to body composition goals of maximum %BF and minimum lean body mass for both men and women.

SELECTION OF CITATIONS
SEARCH DETAIL