Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(39): 15017-15021, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36112086

ABSTRACT

A mixed-valence compound Pb2Cu10O4(SeO3)4Cl7 has a complex structure consisting of one nonmagnetic Cu+ (S = 0) ion and four nonequivalent magnetic Cu2+ (S = 1/2) ions. It exhibits antiferromagnetic ordering at TN = 10.2 K. At a temperature below TN, a sequence of spin-flop transition at Bspin-flop = 1.3 T and 1/3 plateau formation at Bspin-flip = 4.4 K is observed in the magnetization curve M(B). The 1/3 magnetization plateau persists at least up to 53.5 T. The spin exchanges of Pb2Cu10O4(SeO3)4Cl7 evaluated by performing energy-mapping analysis based on DFT+U calculations show that the magnetic properties of Pb2Cu10O4(SeO3)4Cl7 are described by the (Cu2+)7 cluster of corner-sharing (Cu2+)4 tetrahedra, and that each (Cu2+)7 cluster has a S = 3/2 spin arrangement in the ground state. The 1/3 magnetization plateau observed for Pb2Cu10O4(SeO3)4Cl7 is explained by the field-induced flip of every second (Cu2+)7 cluster within a unit cell.

2.
J Phys Condens Matter ; 27(4): 045502, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25566766

ABSTRACT

Recently in iron free arsenide compound CaCo(2)As(2) a 7(1)% of vacancies on the Co sites was detected (Quirinale D G et al 2013 Phys. Rev. B 88 174420). Here we report the investigation of electronic structure and magnetic properties of CaCo(1.86)As(2) within the coherent potential approximation (CPA). First, the CPA calculations are performed on the base of the local spin density approximation. Second, the possible role of Coulomb correlations is checked within the CPA scheme developed recently for strongly correlated systems. Then the spin-orbit coupling, which could be essential for Co, is also taken into account within the CPA calculation. The A type antiferromagnetic ground state and the value of magnetic moment obtained within the CPA approximation are in good agreement with experiment.

3.
J Phys Condens Matter ; 27(2): 026001, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25501902

ABSTRACT

The effects of orbital degrees of freedom on the exchange interactions in a quasi-one-dimensional spin-1 antiferromagnet CaV2O4 are systematically studied. For this purpose a realistic low-energy electron model with the parameters derived from the first-principles calculations is constructed in the Wannier basis for the t2g bands. The exchange interactions are calculated using both the theory of infinitesimal spin rotations near the mean-field ground state and the superexchange model, which provide a consistent description. The obtained behaviour of exchange interactions differs substantially from the previously proposed phenomenological picture based on magnetic measurements and structural considerations, namely: (i) despite the quasi-one-dimensional character of the crystal structure, consisting of the zigzag chains of the edge-sharing VO6 octahedra, the electronic structure is essentially three-dimensional, that leads to finite interactions between the chains; (ii) the exchange interactions along the legs of the chains appear to dominate; and (iii) there is a substantial difference in exchange interactions in two crystallographically inequivalent chains. The combination of these three factors successfully reproduces the behaviour of experimental magnetic susceptibility.

4.
J Phys Condens Matter ; 26(11): 115501, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24589676

ABSTRACT

A method of electronic structure calculations for strongly correlated disordered materials is developed employing the basic idea of the coherent potential approximation. The evolution of the electronic structure and spin magnetic moment value with the concentration x in strongly correlated Ni1-xZnxO solid solutions is investigated in the framework of this method. The values of the energy gap and magnetic moment obtained are in agreement with the available experimental data.


Subject(s)
Electrons , Magnetics , Nickel/chemistry , Zinc Oxide/chemistry , Quantum Theory , Solutions
5.
J Phys Condens Matter ; 22(1): 015701, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-21386232

ABSTRACT

Using a LDA+GTB (local density approximation+generalized tight-binding) hybrid scheme we investigate the band structure of the electron-doped high- T(c) material Sm(2-x)Ce(x)CuO(4). Parameters of the minimal tight-binding model for this system (the so-called three-band Emery model) were obtained within the NMTO (Nth-order muffin-tin orbital) method. The doping evolution of the dispersion and the Fermi surface in the presence of electronic correlations was investigated in two regimes of magnetic order: short-range (spin-liquid) and long-range (antiferromagnetic metal). Each regime is characterized by the specific topologies of the Fermi surfaces and we discuss their relation to recent experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...