Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Front Pharmacol ; 14: 1145994, 2023.
Article in English | MEDLINE | ID: mdl-37188265

ABSTRACT

Background: Imbalance between cell proliferation and apoptosis underlies the development of pulmonary arterial hypertension (PAH). Current vasodilator treatment of PAH does not target the uncontrolled proliferative process in pulmonary arteries. Proteins involved in the apoptosis pathway may play a role in PAH and their inhibition might represent a potential therapeutic target. Survivin is a member of the apoptosis inhibitor protein family involved in cell proliferation. Objectives: This study aimed to explore the potential role of survivin in the pathogenesis of PAH and the effects of its inhibition. Methods: In SU5416/hypoxia-induced PAH mice we assessed the expression of survivin by immunohistochemistry, western-blot analysis, and RT-PCR; the expression of proliferation-related genes (Bcl2 and Mki67); and the effects of the survivin inhibitor YM155. In explanted lungs from patients with PAH we assessed the expression of survivin, BCL2 and MKI67. Results: SU5416/hypoxia mice showed increased expression of survivin in pulmonary arteries and lung tissue extract, and upregulation of survivin, Bcl2 and Mki67 genes. Treatment with YM155 reduced right ventricle (RV) systolic pressure, RV thickness, pulmonary vascular remodeling, and the expression of survivin, Bcl2, and Mki67 to values similar to those in control animals. Lungs of patients with PAH also showed increased expression of survivin in pulmonary arteries and lung extract, and also that of BCL2 and MKI67 genes, compared with control lungs. Conclusion: We conclude that survivin might be involved in the pathogenesis of PAH and that its inhibition with YM155 might represent a novel therapeutic approach that warrants further evaluation.

3.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L677-L693, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36881560

ABSTRACT

Skeletal muscle dysfunction in chronic obstructive pulmonary disease (COPD) is characterized by a significant reduction in muscle strength and endurance. Preclinical studies show that stimulation of the soluble guanylate cyclase (sGC)-cGMP pathway attenuates muscle mass loss and prevents cigarette smoke-induced oxidative stress, indicating that pharmacological activation of the guanylyl cyclase pathway in COPD may provide a beneficial therapeutic strategy that reaches beyond the lung. In this study, conducted in an animal model of COPD, we first set out to assess the effect of cigarette smoke (CS) on biomarkers of muscle fatigue, such as protein degradation and its transcriptional regulation, in two types of muscles with different energy demands, i.e., the diaphragm and the gastrocnemius muscle of the limbs. Second, we evaluated the administration of an sGC stimulator on these markers to study the potential efficacy of such treatment in the recovery of skeletal muscle function. Exposure to CS led to weight loss, which was associated in the gastrocnemius with increased levels of proteolytic markers of muscle atrophy (MURF-1, Atrogin-1, proteasome C8 subunit 20 s, and total protein ubiquitination), whereas the size of fast-twitch muscle fibers decreased significantly. Long-term treatment with the sGC stimulator BAY 41-2272 resulted in a significant reduction in gastrocnemius levels of the aforementioned proteolytic markers, concomitant with a weight recovery and increased cGMP levels. Remarkably, levels of some of the analyzed biomarkers differed between respiratory and limb muscles. In conclusion, targeting sGC might exert beneficial effects on muscle alterations in patients with COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Guinea Pigs , Animals , Soluble Guanylyl Cyclase/metabolism , Guanylate Cyclase/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Muscle, Skeletal/metabolism , Signal Transduction , Biomarkers/metabolism , Atrophy/metabolism , Atrophy/pathology
4.
Life (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743918

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic respiratory disease associated with high morbidity and mortality. Although many patients recover, long-term sequelae after infection have become increasingly recognized and concerning. Among other sequelae, the available data indicate that many patients who recover from COVID-19 could develop fibrotic abnormalities over time. To understand the basic pathophysiology underlying the development of long-term pulmonary fibrosis in COVID-19, as well as the higher mortality rates in patients with pre-existing lung diseases, we compared the transcriptomic fingerprints among patients with COVID-19, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD) using interactomic analysis. Patients who died of COVID-19 shared some of the molecular biological processes triggered in patients with IPF, such as those related to immune response, airway remodeling, and wound healing, which could explain the radiological images seen in some patients after discharge. However, other aspects of this transcriptomic profile did not resemble the profile associated with irreversible fibrotic processes in IPF. Our mathematical approach instead showed that the molecular processes that were altered in COVID-19 patients more closely resembled those observed in COPD. These data indicate that patients with COPD, who have overcome COVID-19, might experience a faster decline in lung function that will undoubtedly affect global health.

5.
Am J Respir Crit Care Med ; 203(10): 1290-1305, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33306938

ABSTRACT

Rationale: Cigarette smoke is considered the chief leading cause of chronic obstructive pulmonary disease (COPD). Its impact on the progressive deterioration of airways has been extensively studied, but its direct effects on the pulmonary vasculature are less known. Objectives: To prove that pulmonary arterial remodeling in patients with COPD is not just a consequence of alveolar hypoxia but also due to the direct effects of cigarette smoke on the pulmonary vascular bed. Methods: We have used different molecular and cell biology approaches, as well as traction force microscopy, wire myography, and patch-clamp techniques in human cells and freshly isolated pulmonary arteries. In addition, we relied on in vivo models and human samples to analyze the effects of cigarette smoke on pulmonary vascular tone alterations. Measurements and Main Results: Cigarette smoke extract exposure directly promoted a hypertrophic, senescent phenotype that in turn contributed, through the secretion of inflammatory molecules, to an increase in the proliferative potential of nonexposed cells. Interestingly, these effects were significantly reversed by antioxidants. Furthermore, cigarette smoke extract affected cell contractility and dysregulated the expression and activity of the voltage-gated K+ channel Kv7.4. This contributed to the impairment of vasoconstriction and vasodilation responses. Most importantly, the levels of this channel were diminished in the lungs of smoke-exposed mice, smokers, and patients with COPD. Conclusions: Cigarette smoke directly contributes to pulmonary arterial remodeling through increased cell senescence, as well as vascular tone alterations because of diminished levels and function in the Kv7.4 channel. Strategies targeting these pathways may lead to novel therapies for COPD.


Subject(s)
KCNQ Potassium Channels/metabolism , Pulmonary Artery/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Smoking/adverse effects , Vascular Remodeling/physiology , Animals , Disease Models, Animal , Humans , Mice , Pulmonary Artery/pathology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Nicotiana , Vasoconstriction , Vasodilation
6.
Int J Chron Obstruct Pulmon Dis ; 15: 2037-2047, 2020.
Article in English | MEDLINE | ID: mdl-32904646

ABSTRACT

Introduction: In chronic obstructive pulmonary disease (COPD), endothelial dysfunction and stiffness of systemic arteries may contribute to increased cardiovascular risk. Pulmonary vascular disease (PVD) is frequent in COPD. The association between PVD and systemic vascular dysfunction has not been thoroughly evaluated in COPD. Methods: A total of 108 subjects were allocated into four groups (non-smoking controls, smoking controls, COPD without PVD and COPD with PVD). In systemic arteries, endothelial dysfunction was assessed by flow-mediated dilation (FMD) and arterial stiffness by pulse wave analysis (PWA) and pulse wave velocity (PWV). PVD was defined by a mean pulmonary artery pressure (PAP) ≥25 mmHg at right heart catheterization or by a tricuspid regurgitation velocity >2.8 m/s at doppler echocardiography. Biomarkers of inflammation and endothelial damage were assessed in peripheral blood. Results: FMD was lower in COPD patients, with or without PVD, compared to non-smoking controls; and in patients with COPD and PVD compared to smoking controls. PWV was higher in COPD with PVD patients compared to both non-smoking and smoking controls in a model adjusted by age and the Framingham score; PWV was also higher in patients with COPD and PVD compared to COPD without PVD patients in the non-adjusted analysis. FMD and PWV correlated significantly with forced expiratory volume in the first second (FEV1), diffusing capacity for carbon monoxide (DLCO) and systolic PAP. FMD and PWV were correlated in all subjects. Discussion: We conclude that endothelial dysfunction of systemic arteries is common in COPD, irrespective if they have PVD or not. COPD patients with PVD show increased stiffness and greater impairment of endothelial function in systemic arteries. These findings suggest the association of vascular impairment in both pulmonary and systemic territories in a subset of COPD patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Vascular Stiffness , Forced Expiratory Volume , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulse Wave Analysis , Respiratory Function Tests
7.
Int J Chron Obstruct Pulmon Dis ; 15: 1315-1324, 2020.
Article in English | MEDLINE | ID: mdl-32606641

ABSTRACT

Pulmonary hypertension (PH) is a frequent and important complication of chronic obstructive pulmonary disease (COPD). It is associated with worse clinical courses with more frequent exacerbation episodes, shorter survival, and greater need of health resources. PH is usually of moderate severity and progresses slowly, without altering right ventricular function in the majority of cases. Nevertheless, a reduced subgroup of patients may present disproportionate PH, with pulmonary artery pressure (PAP) largely exceeding the severity of respiratory impairment. These patients may represent a group with an exaggerated vascular impairment (pulmonary vascular phenotype) to factors that induce PH in COPD or be patients in whom idiopathic pulmonary arterial hypertension (PAH) coexist. The present review addresses the current definition and classification of PH in COPD, the distinction among the different phenotypes of pulmonary vascular disease that might present in COPD patients, and the therapeutic approach to PH in COPD based on the available scientific evidence.


Subject(s)
Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Lung , Pulmonary Circulation , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Ventricular Function, Right
8.
Cancer Res ; 80(2): 276-290, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31694906

ABSTRACT

The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non-small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFß transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFß1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFß1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADC-TAFs and control fibroblasts increased TGFß1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCC-TAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFß1/SMAD3 activation. SIGNIFICANCE: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFß1/SMAD3.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , Indoles/pharmacology , Lung Neoplasms/drug therapy , Smad3 Protein/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Aged , Aged, 80 and over , Animals , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Cohort Studies , DNA Methylation/genetics , Epigenetic Repression , Female , Fibrosis , Gene Expression Regulation, Neoplastic , Humans , Indoles/therapeutic use , Lung/cytology , Lung/drug effects , Lung/pathology , Lung/surgery , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Mice , Middle Aged , Pneumonectomy , Promoter Regions, Genetic/genetics , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Tissue Array Analysis , Xenograft Model Antitumor Assays
9.
PLoS One ; 11(8): e0160505, 2016.
Article in English | MEDLINE | ID: mdl-27486806

ABSTRACT

Diagnosis of pulmonary arterial hypertension (PAH) is difficult due to the lack of specific clinical symptoms and biomarkers, especially at early stages. We compared plasma metabolic fingerprints of PAH patients (n = 20) with matched healthy volunteers (n = 20) using, for the first time, untargeted multiplatform metabolomics approach consisting of high-performance liquid and gas chromatography coupled with mass spectrometry. Multivariate statistical analyses were performed to select metabolites that contribute most to groups' classification (21 from liquid in both ionization modes and 9 from gas chromatography-mass spectrometry). We found metabolites related to energy imbalance, such as glycolysis-derived metabolites, as well as metabolites involved in fatty acid, lipid and amino acid metabolism. We observed statistically significant changes in threitol and aminomalonic acid in PAH patients, which could provide new biochemical insights into the pathogenesis of the disease. The results were externally validated on independent case and control cohorts, confirming up to 16 metabolites as statistically significant in the validation study. Multiplatform metabolomics, followed by multivariate chemometric data analysis has a huge potential for explaining pathogenesis of PAH and for searching potential and new more specific and less invasive markers of the disease.


Subject(s)
Biomarkers/metabolism , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/metabolism , Metabolomics/methods , Adult , Biomarkers/blood , Blood Chemical Analysis/methods , Case-Control Studies , Chromatography, High Pressure Liquid , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Spain
10.
Respir Res ; 10: 76, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19682386

ABSTRACT

BACKGROUND: Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by altering the structure and function of pulmonary vessels at early disease stages. The objectives of this study were to evaluate the effects of long-term exposure to cigarette smoke on endothelial function and smooth muscle-cell proliferation in pulmonary arteries of guinea pigs. METHODS: 19 male Hartley guinea pigs were exposed to the smoke of 7 cigarettes/day, 5 days/week, for 3 and 6 months. 17 control guinea pigs were sham-exposed for the same periods. Endothelial function was evaluated in rings of pulmonary artery and aorta as the relaxation induced by ADP. The proliferation of smooth muscle cells and their phenotype in small pulmonary vessels were evaluated by immunohistochemical expression of alpha-actin and desmin. Vessel wall thickness, arteriolar muscularization and emphysema were assessed morphometrically. The expression of endothelial nitric oxide synthase (eNOS) was evaluated by Real Time-PCR. RESULTS: Exposure to cigarette smoke reduced endothelium-dependent vasodilatation in pulmonary arteries (ANOVA p < 0.05) but not in the aorta. Endothelial dysfunction was apparent at 3 months of exposure and did not increase further after 6 months of exposure. Smoke-exposed animals showed proliferation of poorly differentiated smooth muscle cells in small vessels (p < 0.05) after 3 months of exposure. Prolonged exposure resulted in full muscularization of small pulmonary vessels (p < 0.05), wall thickening (p < 0.01) and increased contractility of the main pulmonary artery (p < 0.05), and enlargement of the alveolar spaces. Lung expression of eNOS was decreased in animals exposed to cigarette smoke. CONCLUSION: In the guinea pig, exposure to cigarette smoke induces selective endothelial dysfunction in pulmonary arteries, smooth muscle cell proliferation in small pulmonary vessels and reduced lung expression of eNOS. These changes appear after 3 months of exposure and precede the development of pulmonary emphysema.


Subject(s)
Endothelium, Vascular/drug effects , Lung/drug effects , Pulmonary Artery/drug effects , Pulmonary Emphysema/chemically induced , Smoke/adverse effects , Smoking/adverse effects , Vasoconstriction/drug effects , Vasodilation/drug effects , Actins/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Desmin/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Endothelium, Vascular/physiopathology , Guinea Pigs , Immunohistochemistry , Inhalation Exposure , Lung/blood supply , Lung/enzymology , Lung/pathology , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nitric Oxide Synthase Type III/genetics , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...