Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 109
1.
Front Neurol ; 15: 1368973, 2024.
Article En | MEDLINE | ID: mdl-38854968

Background and purpose: This study aimed to investigate the factors that influence physiotherapists' decision in choosing restorative or compensatory rehabilitation during gait training in people with neurological disorders (PwNDs) and the different treatments used in the approaches. Methods: This cross-sectional analysis used the baseline data from an observational cohort study. We analyzed data from 83 PwNDs (65 people after stroke, 5 with multiple sclerosis, and 13 with Parkinson's disease) who underwent at least 10 sessions of physiotherapy (PT) focusing on gait function. Performance was quantified using the modified Dynamic Gait Index (MDGI), three impairment domains of Fugl-Meyer Assessment for lower extremity (mFM-LL), Activities-specific Balance Confidence (ABC), modified Barthel Index (mBI), Mini-Mental State Examination (MMSE), and Motivational Index (MI). Forty-three physiotherapists completed a treatment report form categorizing the rehabilitation approach and specifying treatments used (e.g., resistance training and proprioceptive exercises). Results: Fifty-six subjects underwent restorative rehabilitation approach. The univariate predictors of restorative approach were being in the subacute phase with a disease onset of less than 180 days, (odds ratio [95%CI]; 3.27[1.19-9.24]), mFM-LL (1.25[1.11-1.44]), MMSE (0.85[0.67-1.00]), and number of sessions (1.03[1-1.01]). The backward stepwise analysis revealed an association between restorative and subacute phase (36.32[4.11-545.50]), mFM-LL (3.11[1.55-9.73]), mBI (1.79[1.08-3.77]), MMSE (0.46[0.25-0.71]), and the interaction between mFM-LL and mBI (0.99[0.98-1.00]). No statistically significant association between treatments used and approach was found (p = 0.46). Discussion and conclusion: The restorative approach was more commonly used to improve gait. The main variables associated with this approach were: being in the subacute phase of the disease, a low level of impairment, and a high level of functional independence at baseline. However, few differences were found between the treatments used for the restorative or compensatory approaches, as similar PT treatments were used for both.

2.
Sci Rep ; 14(1): 13031, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844758

Valence (positive and negative) and content (embodied vs non-embodied) characteristics of visual stimuli have been shown to influence motor readiness, as tested with response time paradigms. Both embodiment and emotional processing are affected in Parkinson's disease (PD) due to basal ganglia dysfunction. Here we aimed to investigate, using a two-choice response time paradigm, motor readiness when processing embodied (emotional body language [EBL] and emotional facial expressions [FACS]) vs non-embodied (emotional scenes [IAPS]) stimuli with neutral, happy, and fearful content. We enrolled twenty-five patients with early-stage PD and twenty-five age matched healthy participants. Motor response during emotional processing was assessed by measuring response times (RTs) in a home-based, forced two-choice discrimination task where participants were asked to discriminate the emotional stimulus from the neutral one. Rating of valence and arousal was also performed. A clinical and neuropsychological evaluation was performed on PD patients. Results showed that RTs for PD patients were longer for all conditions compared to HC and that RTs were generally longer in both groups for EBL compared to FACS and IAPS, with the sole exception retrieved for PD, where in discriminating fearful stimuli, RTs for EBL were longer compared to FACS but not to IAPS. Furthermore, in PD only, when discriminating fearful respect to neutral stimuli, RTs were shorter when discriminating FACS compared to IAPS. This study shows that PD patients were faster in discriminating fearful embodied stimuli, allowing us to speculate on mechanisms involving an alternative, compensatory, emotional motor pathway for PD patients undergoing fear processing.


Emotions , Facial Expression , Parkinson Disease , Reaction Time , Humans , Parkinson Disease/psychology , Parkinson Disease/physiopathology , Male , Female , Emotions/physiology , Reaction Time/physiology , Aged , Middle Aged , Photic Stimulation , Case-Control Studies
3.
NPJ Digit Med ; 7(1): 142, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796519

Step length is an important diagnostic and prognostic measure of health and disease. Wearable devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the accuracy of current estimation methods is not yet optimal. We developed machine-learning models to estimate step length based on data derived from a single lower-back inertial measurement unit worn by 472 young and older adults with different neurological conditions, including Parkinson's disease and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-difference). Combining machine-learning with a single, wearable sensor generates accurate step length measures, even in patients with neurologic disease. Additional research may be needed to further reduce the errors in certain conditions.

4.
J Clin Med ; 13(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38792540

Background: This is a retrospective longitudinal study comparing 374 patients with Parkinson's disease (PD) who were treated in centers offering a specialized program of enhanced rehabilitation therapy in addition to expert outpatient care to 387 patients with PD, who only received expert outpatient care at movement disorders centers in Italy. Methods: The data are from subjects recruited in the Parkinson's Outcome Project (POP) at six Italian centers that are part of a multicenter collaboration for care quality improvement (the Fresco Network). The effects were measured with a baseline and a follow-up clinical evaluation of the Timed-Up-and-Go test (TUG), Parkinson's Disease Questionnaire (PDQ-39), and Multidimensional Caregiver Strain Index (MCSI), the number of falls and hospitalizations for any cause. We used a generalized linear mixed model with the dependent variables being the response variable, which included the covariates demographics, evaluation, and treatment variables. Results: We found that the subjects who underwent specialized enhanced rehabilitation had a better motor outcome over time than those who were managed by expert neurologists but had participated in community programs for exercise and other allied health interventions. The greatest effects were seen in patients in the early stages of the disease with a high amount of vigorous exercise per week in the last six months. Similar effects were seen for PDQ39, MCSI, the number of falls, and hospitalization. Conclusions: Long-term benefits to motor function and the quality of life in patients with PD and burden reduction in their caregivers can be achieved through a systematic program of specialized enhanced rehabilitation interventions.

5.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732980

Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, ß, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and ß bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, ß ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.


Brain , Electroencephalography , Gait , Walking , Humans , Gait/physiology , Male , Electroencephalography/methods , Brain/physiology , Brain/diagnostic imaging , Female , Adult , Walking/physiology , Nerve Net/physiology , Nerve Net/diagnostic imaging , Young Adult
6.
Sci Rep ; 14(1): 5207, 2024 03 03.
Article En | MEDLINE | ID: mdl-38433230

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the θ, α, and ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). Positive correlations were identified between VMIQ and avgERD of the middle cingulum in the ß band and with avgERD of the left insula, right precentral area, and right middle occipital region in the θ band. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.


Gait , Gastropoda , Adult , Animals , Humans , Walking , Brain , Cell Membrane , Electroencephalography
7.
Mov Disord Clin Pract ; 11(4): 337-345, 2024 Apr.
Article En | MEDLINE | ID: mdl-38178646

BACKGROUND: Motor symptoms in functional motor disorders (FMDs) refer to involuntary, but learned, altered movement patterns associated with aberrant self-focus, sense of agency, and belief/expectations. These conditions commonly lead to impaired posture control, raising the likelihood of falls and disability. Utilizing visual and cognitive tasks to manipulate attentional focus, virtual reality (VR) integrated with posturography is a promising tool for exploring postural control disorders. OBJECTIVES: To investigate whether postural control can be adapted by manipulating attentional focus in a 3D immersive VR environment. METHODS: We compared postural parameters in 17 FMDs patients and 19 age-matched healthy controls over a single session under four increasingly more complex and attention-demanding conditions: simple fixation task (1) in the real room and (2) in 3D VR room-like condition; complex fixation task in a 3D VR city-like condition (3) avoiding distractors and (4) counting them. Dual-task effect (DTE) measured the relative change in performance induced by the different attention-demanding conditions on postural parameters. RESULTS: Patients reduced sway area and mediolateral center of pressure displacement velocity DTE compared to controls (all, P < 0.049), but only under condition 4. They also showed a significant reduction in the sway area DTE under condition 4 compared to condition 3 (P = 0.025). CONCLUSIONS: This study provides novel preliminary evidence for the value of a 3D immersive VR environment combined with different attention-demanding conditions in adapting postural control in patients with FMDs. As supported by quantitative and objective posturographic measures, our findings may inform interventions to explore FMDs pathophysiology.


Motor Disorders , Virtual Reality , Humans , Movement/physiology , Postural Balance/physiology , Learning
8.
J Parkinsons Dis ; 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38250785

Action observation (AO) and motor imagery (MI) has emerged as promising tool for physiotherapy intervention in Parkinson's disease (PD). This narrative review summarizes why, how, and when applying AO and MI training in individual with PD. We report the neural underpinning of AO and MI and their effects on motor learning. We examine the characteristics and the current evidence regarding the effectiveness of physiotherapy interventions and we provide suggestions about their implementation with technologies. Neurophysiological data suggest a substantial correct activation of brain networks underlying AO and MI in people with PD, although the occurrence of compensatory mechanisms has been documented. Regarding the efficacy of training, in general evidence indicates that both these techniques improve mobility and functional activities in PD. However, these findings should be interpreted with caution due to variety of the study designs, training characteristics, and the modalities in which AO and MI were applied. Finally, results on long-term effects are still uncertain. Several elements should be considered to optimize the use of AO and MI in clinical setting, such as the selection of the task, the imagery or the video perspectives, the modalities of training. However, a comprehensive individual assessment, including motor and cognitive abilities, is essential to select which between AO and MI suite the best to each PD patients. Much unrealized potential exists for the use AO and MI training to provide personalized intervention aimed at fostering motor learning in both the clinic and home setting.

9.
Mov Disord ; 39(2): 328-338, 2024 Feb.
Article En | MEDLINE | ID: mdl-38151859

BACKGROUND: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression. OBJECTIVES: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale. METHODS: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time. RESULTS: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]). CONCLUSIONS: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Parkinson Disease/complications , Mental Status and Dementia Tests , Logistic Models , Severity of Illness Index , Disease Progression
10.
Brain Commun ; 5(6): fcad326, 2023.
Article En | MEDLINE | ID: mdl-38107501

The neural correlates that help us understand the challenges that Parkinson's patients face when negotiating their environment remain under-researched. This deficit in knowledge reflects the methodological constraints of traditional neuroimaging techniques, which include the need to remain still. As a result, much of our understanding of motor disorders is still based on animal models. Daily life challenges such as tripping and falling over obstacles represent one of the main causes of hospitalization for individuals with Parkinson's disease. Here, we report the neural correlates of naturalistic ambulatory obstacle avoidance in Parkinson's disease patients using mobile EEG. We examined 14 medicated patients with Parkinson's disease and 17 neurotypical control participants. Brain activity was recorded while participants walked freely, and while they walked and adjusted their gait to step over expected obstacles (preset adjustment) or unexpected obstacles (online adjustment) displayed on the floor. EEG analysis revealed attenuated cortical activity in Parkinson's patients compared to neurotypical participants in theta (4-7 Hz) and beta (13-35 Hz) frequency bands. The theta power increase when planning an online adjustment to step over unexpected obstacles was reduced in Parkinson's patients compared to neurotypical participants, indicating impaired proactive cognitive control of walking that updates the online action plan when unexpected changes occur in the environment. Impaired action planning processes were further evident in Parkinson's disease patients' diminished beta power suppression when preparing motor adaptation to step over obstacles, regardless of the expectation manipulation, compared to when walking freely. In addition, deficits in reactive control mechanisms in Parkinson's disease compared to neurotypical participants were evident from an attenuated beta rebound signal after crossing an obstacle. Reduced modulation in the theta frequency band in the resetting phase across conditions also suggests a deficit in the evaluation of action outcomes in Parkinson's disease. Taken together, the neural markers of cognitive control of walking observed in Parkinson's disease reveal a pervasive deficit of motor-cognitive control, involving impairments in the proactive and reactive strategies used to avoid obstacles while walking. As such, this study identified neural markers of the motor deficits in Parkinson's disease and revealed patients' difficulties in adapting movements both before and after avoiding obstacles in their path.

11.
Cerebellum ; 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38147293

Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.

12.
J Clin Med ; 12(20)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37892621

Despite their relevance in neurorehabilitation, physical therapy (PT) goals and interventions are poorly described, compromising a proper understanding of PT effectiveness in everyday clinical practice. Thus, this paper aims to describe the prevalence of PT goals and interventions in people with neurological disorders, along with the participants' clinical features, setting characteristics of the clinical units involved, and PT impact on outcome measures. A multicenter longitudinal observational study involving hospitals and rehabilitation centers across Italy has been conducted. We recruited people with stroke (n = 119), multiple sclerosis (n = 48), and Parkinson's disease (n = 35) who underwent the PT sessions foreseen by the National Healthcare System. Clinical outcomes were administered before and after the intervention, and for each participant the physical therapists completed a semi-structured interview to report the goals and interventions of the PT sessions. Results showed that the most relevant PT goals were related to the ICF activities with "walking" showing the highest prevalence. The most used interventions aimed at improving walking performance, followed by those aimed at improving organ/body system functioning, while interventions targeting the cognitive-affective and educational aspects have been poorly considered. Considering PT effectiveness, 83 participants experienced a clinically significant improvement in the outcome measures assessing gait and balance functions.

13.
Parkinsonism Relat Disord ; 116: 105858, 2023 Nov.
Article En | MEDLINE | ID: mdl-37774517

INTRODUCTION: Motor imagery (MI) skills can be affected in Parkinson's disease (PD). We aimed at assessing MI and brain functional changes after action observation and MI training (AOT-MI) associated with gait/balance exercises in PD patients with postural instability and gait disorders (PD-PIGD). METHODS: Twenty-five PD-PIGD patients were randomized into two groups: DUAL-TASK + AOT-MI group performed 6-week gait/balance training combined with AOT-MI; DUAL-TASK group performed the same exercises without AOT-MI. Before and after training, MI was assessed using Kinesthetic-and-Visual-Imagery Questionnaire (KVIQ) and a MI functional MRI (fMRI) task. During fMRI, subjects were asked to watch first-person perspective videos representing gait/balance tasks and mentally simulate their execution. At baseline patients were compared with 23 healthy controls. RESULTS: PD groups did not differ in the MI scores. Both patient groups increased kinesthetic KVIQ score after training, while only DUAL-TASK + AOT-MI group improved visual and total KVIQ scores. At baseline, both PD groups showed reduced fMRI activity of sensorimotor, temporal and cerebellar areas relative to controls. After training, DUAL-TASK + AOT-MI patients increased activity of anterior cingulate, fronto-temporal and motor cerebellar areas, and reduced the recruitment of cognitive cerebellar regions. DUAL-TASK group showed increased recruitment of occipito-temporal areas and reduced activity of cerebellum crus-I. DUAL-TASK + AOT-MI relative to DUAL-TASK group had increased activity of cerebellum VIII-IX. In DUAL-TASK + AOT-MI group, KVIQ improvement correlated with increased activity of cerebellum IX and anterior cingulate, and with reduced activity of crus-I. CONCLUSIONS: AOT-MI improves MI abilities in PD-PIGD patients, promoting the functional plasticity of brain areas involved in MI processes and gait/balance control.


Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Cerebellum , Magnetic Resonance Imaging
14.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article En | MEDLINE | ID: mdl-37687775

Persons post-stroke experience excessive muscle co-contraction, and consequently the arm functions are compromised during the activities of daily living. Therefore, identifying instrumental outcome measures able to detect the motor strategy adopted after a stroke is a primary clinical goal. Accordingly, this study aims at verifying whether the surface electromyography (sEMG)-based co-contraction index (CCI) could be a new clinically feasible approach for assessing and monitoring patients' motor performance. Thirty-four persons post-stroke underwent clinical assessment and upper extremity kinematic analysis, including sEMG recordings. The participants were randomized into two treatment groups (robot and usual care groups). Ten healthy subjects provided a normative reference (NR). Frost's CCI was used to quantify the muscle co-contraction of three different agonist/antagonist muscle pairs during an object-placing task. Persons post-stroke showed excessive muscle co-contraction (mean (95% CI): anterior/posterior deltoid CCI: 0.38 (0.34-0.41) p = 0.03; triceps/biceps CCI: 0.46 (0.41-0.50) p = 0.01) compared to NR (anterior/posterior deltoid CCI: 0.29 (0.21-0.36); triceps/biceps CCI: 0.34 (0.30-0.39)). After robot therapy, persons post-stroke exhibited a greater improvement (i.e., reduced CCI) in proximal motor control (anterior/posterior deltoid change score of CCI: -0.02 (-0.07-0.02) p = 0.05) compared to usual care therapy (0.04 (0.00-0.09)). Finally, the findings of the present study indicate that the sEMG-based CCI could be a valuable tool in clinical practice.


Stroke Rehabilitation , Stroke , Humans , Electromyography , Activities of Daily Living , Pilot Projects , Upper Extremity
15.
Brain Res ; 1820: 148540, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37598900

INTRODUCTION: We recently demonstrated specific spectral signatures associated with updating of memory information, working memory (WM) maintenance and readout, with relatively high spatial resolution by means of high-density electroencephalography (hdEEG). WM is impaired already in early symptomatic HD (early-HD) and in pre-manifest HD (pre-HD). The aim of this study was to test whether hdEEG coupled to source localization allows for the identification of neuronal oscillations in specific frequency bands in 16 pre-HD and early-HD during different phases of a WM task. METHODS: We examined modulation of neural oscillations by event-related synchronization and desynchronization (ERS/ERD) of θ, ß, gamma low, γLOW and γHIGH EEG bands in a-priori selected large fronto-parietal network, including the insula and the cerebellum. RESULTS: We found: (i) Reduced θ oscillations in HD with respect to controls in almost all the areas of the WM network during the update and readout phases; (ii) Modulation of ß oscillations, which increased during the maintenance phase of the WM task in both groups; (iii) correlation of γHIGH oscillations during WM task with disease burden score in HD patients. CONCLUSIONS: Our data show reduced phase-specific modulation of oscillations in pre-HD and early-HD, even in the presence of preserved dynamic of modulation. Particularly, reduced synchronization in the θ band in the areas of the WM network, consistent with abnormal long-range coordination of neuronal activity within this network, was found in update and readout phases in HD groups.

16.
Neuroscience ; 526: 246-255, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37437801

Music is an important tool for the induction and regulation of emotion. Although learning a sequential motor behaviour is essential to normal motor function, to our knowledge, the role of music-induced emotion on motor learning has not been explored. Our experiment aimed to determine whether listening to different emotional music could influence motor sequence learning. We focused on two sub-components of motor sequence learning: the acquisition of the order of the elements in the sequence (the "what"), and the ability to carry out the sequence, combining the elements in a single, skilled action (the "how"). Twenty subjects performed a motor sequence-learning task with a digitizing tablet in three different experimental sessions. In each session they executed the task while listening to three different musical pieces, eliciting fearful, pleasant, and neutral mood. Eight targets were presented in a pre-set order and subjects were asked to learn the sequence while moving. Music-induced pleasure had an impact on movement kinematics with onset time and peak velocity decreasing and movement time increasing more with respect to neutral music session. Declarative learning, verbal recall of the sequence order, was improved under emotional manipulation, but only for fear-condition. Results suggest that music-induced emotion can influence both sub-components of motor learning in a different way. Music-induced pleasure may have improved motor components of sequence learning by means of increased striatal dopamine availability whereas music-induced fear may facilitate the recruitment of attentional circuits, thus acting on declarative knowledge of the sequence order.

17.
Front Neurol ; 14: 1205386, 2023.
Article En | MEDLINE | ID: mdl-37448748

Background: Parkinson's disease (PD) patients experience deterioration in mobility with consequent inactivity and worsened health and social status. Physical activity and physiotherapy can improve motor impairments, but several barriers dishearten PD patients to exercise regularly. Home-based approaches (e.g., via mobile apps) and remote monitoring, could help in facing this issue. Objective: This study aimed at testing the feasibility, usability and training effects of a home-based exercise program using a customized version of Parkinson Rehab® application. Methods: Twenty PD subjects participated in a two-month minimally supervised home-based training. Daily session consisted in performing PD-specific exercises plus a walking training. We measured: (i) feasibility (training adherence), usability and satisfaction (via an online survey); (ii) safety; (iii) training effects on PD severity, mobility, cognition, and mood. Evaluations were performed at: baseline, after 1-month of training, at the end of training (T2), and at 1-month follow-up (T3). Results: Eighteen out of twenty participants completed the study without important adverse events. Participants' adherence was 91% ± 11.8 for exercise and 105.9% ± 30.6 for walking training. Usability and satisfaction survey scored 70.9 ± 7.7 out of 80. Improvements in PD severity, mobility and cognition were found at T2 and maintained at follow-up. Conclusion: The home-based training was feasible, safe and seems to positively act on PD-related symptoms, mobility, and cognition in patients with mild to moderate stage of PD disease. Additionally, the results suggest that the use of a mobile app might increase the amount of daily physical activity in our study population. Remote monitoring and tailored exercise programs appear to be key elements for promoting exercise. Future studies in a large cohort of PD participants at different stages of disease are needed to confirm these findings.

18.
Musculoskelet Sci Pract ; 66: 102800, 2023 Aug.
Article En | MEDLINE | ID: mdl-37344290

AIMS: This study aims to assess differences in clinical characteristics across healthy controls and migraine patients with (MNP) and without (MwoNP) neck pain. METHOD: This study assessed: headache frequency; headache disability index (HDI); central sensitization inventory (CSI); Hospital Anxiety (HADS-A) and Depression (HADS-D) scale; active range of motion (AROM); flexion rotation test (FRT); activation pressure score (APS); number of active/latent myofascial trigger points (MTrPs) in head/neck muscles; number of positive cervical vertebral segments (C1/C2) who reproduce migraine pain; wind-up ratio (WUR); mechanical pain threshold (MPT) and static pressure pain threshold (sPPT) over the trigeminal area; sPPT and dynamic PPT (dPPT) over the cervical area; sPPTs and MPT over the hand. RESULTS: Compared to controls, MNP had: worse CSI, HADS-A, and HADS-D (all, p < 0.002); reduced AROM (flexion, extension, left lateral-flexion, and right-rotation), FRT, APS, and a higher number of MTrPs and positive cervical vertebral segments (all, p < 0.020); reduced trigeminal MPT and sPPT, cervical sPPT and dPPT, hand MPT and sPPT (all, p < 0.006). Compared to controls, MwoNP had: worse CSI, and HADS-A (all, p < 0.002); reduced AROM (flexion, and left lateral-flexion), FRT, APS, and a higher number of MTrPs and positive cervical vertebral segments (all, p < 0.017); reduced trigeminal MPT and cervical dPPT (all, p < 0.007). Compared to MwoNP, MNP had higher headache frequency, worse HDI and CSI (all, p < 0.006); reduced AROM (flexion, and right rotation) (all, p < 0.037); reduced cervical dPPT (all, p < 0.002). CONCLUSION: MNP had worse headache characteristics, more pronounced cervical musculoskeletal impairments, enhanced signs and symptoms related to sensitization, and worse psychological burden compared to MwoNP.


Migraine Disorders , Neck Pain , Humans , Neck Pain/diagnosis , Neck , Headache , Muscle, Skeletal
19.
Res Sq ; 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37090654

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography (hdEEG) in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). VMIQ was positively correlated with avgERD of frontal and cingulate areas, whereas IA SCORE was positively correlated with avgERD of left inferior frontal and superior temporal regions. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.

20.
Neurosci Biobehav Rev ; 150: 105189, 2023 07.
Article En | MEDLINE | ID: mdl-37086934

The difficulty in assessing FOG and the variety of existing cues, hamper to determine which cueing modality should be applied and which FOG-related aspect should be targeted to reach personalized treatments for FOG. This systematic review aimed to highlight: i) whether cues could reduce FOG and improve FOG-related gait parameters, ii) which cues are the most effective, iii) whether medication state (ON-OFF) affects cues-related results. Thirty-three repeated measure design studies assessing cueing effectiveness were included and subdivided according to gait tasks (gait initiation, walking, turning) and to the medication state. Main results reveal that: preparatory phase of gait initiation benefit from visual and auditory cues; spatio-temporal parameters (e.g., step and stride length) are improved by visual cues during walking; turning time and step time variability are reduced by applying auditory and visual cues. Some findings on the potential benefits of cueing on FOG and FOG gait-related parameters were found. Questions remain about which are the best behavioral strategies according to FOG features and PD clinical characteristics.


Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Cues , Gait Disorders, Neurologic/etiology , Gait , Walking
...