Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963044

ABSTRACT

Lysine methyltransferase 5A (KMT5A) is the sole mammalian enzyme known to catalyse the mono­methylation of histone H4 lysine 20 and non­histone proteins such as p53, which are involved in the occurrence and progression of numerous cancers. The present study aimed to determine the function of KMT5A in inducing docetaxel (DTX) resistance in patients with breast carcinoma by evaluating glucose metabolism and the underlying mechanism involved. The upregulation or downregulation of KMT5A­related proteins was examined after KMT5A knockdown in breast cancer (BRCA) cells by Tandem Mass Tag proteomics. Through differential protein expression and pathway enrichment analysis, the upregulated key gluconeogenic enzyme fructose­1,6­bisphosphatase 1 (FBP1) was discovered. Loss of FBP1 expression is closely related to the development and prognosis of cancers. A dual­luciferase reporter gene assay confirmed that KMT5A inhibited the expression of FBP1 and that overexpression of FBP1 could enhance the chemotherapeutic sensitivity to DTX through the suppression of KMT5A expression. The KMT5A inhibitor UNC0379 was used to verify that DTX resistance induced by KMT5A through the inhibition of FBP1 depended on the methylase activity of KMT5A. According to previous literature and interaction network structure, it was revealed that KMT5A acts on the transcription factor twist family BHLH transcription factor 1 (TWIST1). Then, it was verified that TWSIT1 promoted the expression of FBP1 by using a dual­luciferase reporter gene experiment. KMT5A induces chemotherapy resistance in BRCA cells by promoting cell proliferation and glycolysis. After the knockdown of the KMT5A gene, the FBP1 related to glucose metabolism in BRCA was upregulated. KMT5A knockdown expression and FBP1 overexpression synergistically inhibit cell proliferation and block cells in the G2/M phase. KMT5A inhibits the expression of FBP1 by methylating TWIST1 and weakening its promotion of FBP1 transcription. In conclusion, KMT5A was shown to affect chemotherapy resistance by regulating the cell cycle and positively regulate glycolysis­mediated chemotherapy resistance by inhibiting the transcription of FBP1 in collaboration with TWIST1. KMT5A may be a potential therapeutic target for chemotherapy resistance in BRCA.


Subject(s)
Breast Neoplasms , Docetaxel , Drug Resistance, Neoplasm , Fructose-Bisphosphatase , Gene Expression Regulation, Neoplastic , Nuclear Proteins , Twist-Related Protein 1 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Docetaxel/pharmacology , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Proliferation/drug effects , DNA Methylation
2.
Exp Gerontol ; : 112499, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901772

ABSTRACT

OBJECTIVES: Lifelong learning facilitates active ageing, and intragenerational learning-the process by which older adults learn from their peers-is an effective means of achieving this goal. The present research aims to elucidate the mechanisms and differences between intergenerational and intragenerational learning models for older adults as evidenced by brain-to-brain synchrony. METHODS: Fifty-six instructor-learner dyads completed a study comparing intergenerational and intragenerational learning models, as well as task difficulty. The study utilized a block puzzle task and functional near-infrared spectroscopy (fNIRS) for hyperscanning. RESULTS: The instructor-learner dyads showed greater interpersonal neural synchrony (INS) and learning acquisition in the intragenerational learning model in the difficult task condition (t (54) = 3.49, p < 0.01), whereas the two learning models yielded similar results in the easy condition (t (54) = 1.96, p = 0.06). In addition, INS and self-efficacy mediated the association between learning models and learning acquisition in older adults (b = 0.14, SEM = 0.04, 95 % CI [0.01 0.16]). DISCUSSION: This study is the first to provide evidence of interbrain synchrony in an investigation of the intragenerational learning model in older adults. Our findings suggest that intra-learning is as effective as traditional inter-learning and may be more effective in certain contexts, such as difficult tasks. Encouraging intra-learning in community service or educational activities can effectively mitigate the challenge of limited volunteers and enhance learning acquisition among older adults.

3.
Adv Mater ; : e2405511, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923158

ABSTRACT

In adhesive industry, tapes are renowned for their superior flexibility, repeatability, and ease of storage compared to glues. However, conventional adhesive tapes often suffer from low adhesion strength (<500 kPa). This work introduces an innovative adhesive tape composed of an amphiphilic copolymer and a hydrophobic ionic liquid, achieving an ultrahigh adhesion strength of up to 3.1 MPa on various substrates, making a record-high strength to date for tape-type adhesives. This exceptional adhesion performance is facilitated by water droplets applied at the bonding interface, transforming the adhesive surface into a glue-like property without the need for curing treatments or additional auxiliary equipment. By combining the advantageous features of both glues and tapes, these adhesives are termed as transient semi-glue tapes (TSGT). The mechanism behind such water activation and self-locking process is elucidated, and a general preparation approach is developed. Furthermore, the repeatability and recyclability of TSGT are demonstrated, offering an ingenious solution to this long-standing engineering challenge.

4.
ACS Chem Neurosci ; 15(13): 2484-2503, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38865609

ABSTRACT

Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.


Subject(s)
Microglia , Neuroinflammatory Diseases , Neuroprotective Agents , STAT3 Transcription Factor , Tryptamines , Animals , Microglia/drug effects , Microglia/metabolism , Tryptamines/pharmacology , STAT3 Transcription Factor/metabolism , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Structure-Activity Relationship , Male , Cyclooxygenase 2/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
5.
Gastrointest Endosc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851456

ABSTRACT

BACKGROUND AND AIMS: Despite the benefits of artificial intelligence (AI) in small bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS: In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning (DL)-based SmartScan (SS), which has been described previously. A total of 1,069 magnetically controlled gastrointestinal (GI) CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new AI algorithm named SS Plus. 342 fully automated, magnetically controlled CE (FAMCE) examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-Assisted Reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS: SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (1000) (median, IQR 814.50-1,000) versus 44,322.73 (42,393) (median, IQR 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 min (8.51) (median, IQR 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS: Our study shows that the newly upgraded DL-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.

6.
Fish Shellfish Immunol ; 150: 109662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821229

ABSTRACT

SIRT6, a key member of the sirtuin family, plays a pivotal role in regulating a number of vital biological processes, including energy metabolism, oxidative stress, and immune system modulation. Nevertheless, the function of SIRT6 in bony fish, particularly in the context of antiviral immune response, remains largely unexplored. In this study, a sirt6 was cloned and characterized in a commercial fish, the Chinese perch (Siniperca chuatsi). The SIRT6 possesses conserved SIR2 domain with catalytic core region when compared with other vertebrates. Tissue distribution analysis indicated that sirt6 was expressed in all detected tissues, and the sirt6 was significantly induced following infection of infectious haemorrhagic syndrome virus (IHSV). The overexpression of SIRT6 resulted in significant upregulation of interferon-stimulated genes (ISGs), such as viperin, mx, isg15, irf3 and ifp35, and inhibited viral replication. It was further found that SIRT6 was located in nucleus and could enhance the expression of ISGs induced by type I and II IFNs. These findings may provide new information in relation with the function of SIRT6 in vertebrates, and with viral prevention strategy development in aquaculture.


Subject(s)
Amino Acid Sequence , Fish Diseases , Fish Proteins , Gene Expression Regulation , Immunity, Innate , Perches , Phylogeny , Rhabdoviridae Infections , Sirtuins , Animals , Sirtuins/genetics , Sirtuins/immunology , Sirtuins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Immunity, Innate/genetics , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Perches/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary
7.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38729157

ABSTRACT

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Subject(s)
Axons , Disease Models, Animal , Glaucoma , LIM-Homeodomain Proteins , Nerve Regeneration , Retinal Ganglion Cells , Transcription Factors , Animals , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Glaucoma/genetics , Glaucoma/pathology , Glaucoma/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Axons/metabolism , Axons/pathology , Mice , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Mice, Inbred C57BL , Cell Survival/genetics , Semaphorins/metabolism , Semaphorins/genetics , N-Methylaspartate/metabolism
8.
Eur J Med Chem ; 273: 116500, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38776807

ABSTRACT

The deficiency in available targeted agents and frequency of chemoresistance are primary challenges in clinical management of triple-negative breast cancer (TNBC). The aberrant expression of USP21 and JAK2 represents a characterized mechanism of TNBC progression and resistance to paclitaxel (PTX). Despite its clear that high expression of USP21-mediated de-ubiquitination leads to increased levels of JAK2 protein, we lack regulator molecules to dissect the mechanisms that the interaction between USP21 and JAK2 contributes to the phenotype and resistance of TNBC. Here, we report a USP21/JAK2/STAT3 axis-targeting regulator 13c featuring a N-anthraniloyl tryptamine scaffold that showed excellent anti-TNBC potency and promising safety profile. Importantly, the therapeutic potential of using 13c in combination with PTX in PTX-resistant TNBC was demonstrated. This study showcases N-anthraniloyl tryptamine derivatives as a novel anti-TNBC chemotype with a pharmacological mode of action targeting the USP21/JAK2/STAT3 axis and provides a potential therapeutic target for the treatment of TNBC.


Subject(s)
Antineoplastic Agents , Janus Kinase 2 , STAT3 Transcription Factor , Triple Negative Breast Neoplasms , Ubiquitin Thiolesterase , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Structure-Activity Relationship , Cell Proliferation/drug effects , Animals , Drug Discovery , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Female , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Line, Tumor , Mice , Paclitaxel/pharmacology , Paclitaxel/chemistry
9.
World J Gastrointest Surg ; 16(5): 1371-1376, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817278

ABSTRACT

BACKGROUND: Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation. Oral probiotics are one of the postoperative treatments for rapid rehabilitation. However, there is a lack of prospective studies on this topic after appendectomy. AIM: To investigate whether the postoperative probiotics can modulate the inflammatory response and restore intestinal function in patients following appendectomy. METHODS: This was a prospective, randomized trial. A total of 60 emergency patients were randomly divided into a control group (n = 30) and a probiotic group (n = 30). Patients in the control group started to drink some water the first day after surgery, and those in the probiotic group were given water supplemented with Bacillus licheniformis capsules for 5 consecutive days postsurgery. The indices of inflammation and postoperative conditions were recorded, and the data were analyzed with RStudio 4.3.2 software. RESULTS: A total of 60 participants were included. Compared with those in the control group, the C-reactive protein (CRP), interleukin 6 and procalcitonin (PCT) levels were significantly lower in the probiotic group at 2 d after surgery (P = 2.224e-05, P = 0.037, and P = 0.002, respectively, all P < 0.05). This trend persisted at day 5 post-surgery, with CRP and PCT levels remaining significantly lower in the probiotic group (P = 0.001 and P = 0.043, both P < 0.05). Furthermore, probiotics resulted in a shorter time to first flatus and a greater percentage of gram-negative bacilli in the feces (P = 0.035, P = 0.028, both P < 0.05). CONCLUSION: Postoperative oral administration of probiotics may modulate the gut microbiota, benefit the recovery of the early inflammatory response, and subsequently enhance recovery after appendectomy.

10.
Front Immunol ; 15: 1374368, 2024.
Article in English | MEDLINE | ID: mdl-38715616

ABSTRACT

NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.


Subject(s)
Fish Proteins , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Signal Transduction , Animals , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Perches/genetics , Perches/immunology , Perches/metabolism , Interferons/metabolism , Interferons/genetics , Promoter Regions, Genetic , Transcription, Genetic , Immunity, Innate/genetics , Protein Binding
11.
Food Chem ; 453: 139581, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754354

ABSTRACT

This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and ß-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Dioscorea/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Ultrasonic Waves
12.
J Fungi (Basel) ; 10(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786704

ABSTRACT

Autophagy, a conserved cellular recycling process, plays a crucial role in maintaining homeostasis under stress conditions. It also regulates the development and virulence of numerous filamentous fungi. In this study, we investigated the specific function of ATG8, a reliable autophagic marker, in the opportunistic pathogen Aspergillus flavus. To investigate the role of atg8 in A. flavus, the deletion and complemented mutants of atg8 were generated according to the homologous recombination principle. Deletion of atg8 showed a significant decrease in conidiation, spore germination, and sclerotia formation compared to the WT and atg8C strains. Additionally, aflatoxin production was found severely impaired in the ∆atg8 mutant. The stress assays demonstrated that ATG8 was important for A. flavus response to oxidative stress. The fluorescence microscopy showed increased levels of reactive oxygen species in the ∆atg8 mutant cells, and the transcriptional result also indicated that genes related to the antioxidant system were significantly reduced in the ∆atg8 mutant. We further found that ATG8 participated in regulating the pathogenicity of A. flavus on crop seeds. These results revealed the biological role of ATG8 in A. flavus, which might provide a potential target for the control of A. flavus and AFB1 biosynthesis.

13.
Sleep Med ; 119: 155-163, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678759

ABSTRACT

OBJECTIVES: Sleep is associated with cognitive function in older adults. In the current study, we examined this relationship from subjective and objective perspectives, and determined the robustness and dimensional specificity of the associations using a comprehensive modelling approach. METHODS: Multiple dimensions of subjective (sleep quality and daytime sleepiness) and objective sleep (sleep stages, sleep parameters, sleep spindles, and slow oscillations), as well as subjectively reported and objectively measured cognitive function were collected from 55 older adults. Specification curve analysis was used to examine the robustness of correlations for the effects of sleep on cognitive function. RESULTS: Robust associations were found between sleep and objectively measured cognitive function, but not with subjective cognitive complaints. In addition, subjective sleep showed robust and consistent associations with global cognitive function, whereas objective sleep showed a more domain-specific association with episodic memory. Specifically, subjective sleep quality and daytime sleepiness correlated with global cognitive function, and objective sleep parameters correlated with episodic memory. CONCLUSIONS: Overall, associations between sleep and cognitive function in older adults depend on how they are measured and which specific dimensions of sleep and domains of cognitive function are considered. It highlights the importance of focusing on specific associations to ameliorate the detrimental effects of sleep disturbance on cognitive function in later life.


Subject(s)
Cognition , Sleep Quality , Humans , Male , Female , Aged , Cognition/physiology , Sleep/physiology , Polysomnography , Memory, Episodic , Neuropsychological Tests/statistics & numerical data , Aged, 80 and over , Sleep Stages/physiology
14.
J Hazard Mater ; 469: 133932, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38484659

ABSTRACT

The extensive use of aluminum (Al) poses an escalating ecological risk to aquatic ecosystems. The epiphytic biofilm on submerged plant leaves plays a crucial role in the regulation nutrient cycling and energy flow within aquatic environments. Here, we conducted a mesocosm experiment aimed at elucidating the impact of different Al concentrations (0, 0.6, 1.2, 2.0 mg/L) on microbial communities in epiphytic biofilms on Vallisneria natans. At 1.2 mg/L, the highest biofilms thickness (101.94 µm) was observed. Al treatment at 2.0 mg/L significantly reduced bacterial diversity, while micro-eukaryotic diversity increased. Pseudomonadota and Bacteroidota decreased, whereas Cyanobacteriota increased at 1.2 mg/L and 2.0 mg/L. At 1.2 and 2.0 mg/L. Furthermore, Al at concentrations of 1.2 and 2.0 mg/L enhanced the bacterial network complexity, while micro-eukaryotic networks showed reduced complexity. An increase in positive correlations among microbial co-occurrence patterns from 49.51% (CK) to 57.05% (2.0 mg/L) was indicative of augmented microbial cooperation under Al stress. The shift in keystone taxa with increasing Al concentration pointed to alterations in the functional dynamics of microbial communities. Additionally, Al treatments induced antioxidant responses in V. natans, elevating leaf reactive oxygen species (ROS) content. This study highlights the critical need to control appropriate concentration Al concentrations to preserve microbial diversity, sustain ecological functions, and enhance lake remediation in aquatic ecosystems.


Subject(s)
Hydrocharitaceae , Microbiota , Aluminum/toxicity , Biofilms , Plant Leaves , Microbial Interactions
15.
Front Oncol ; 14: 1346964, 2024.
Article in English | MEDLINE | ID: mdl-38482206

ABSTRACT

Pancreatoblastoma (PB) is a rare malignant pancreatic epithelial tumor that mostly occurs in children and occasionally occurs in adults. The tumor has acinar cell differentiation and squamous corpuscles/squamous epithelial islands, which are frequently separated by fibrous bundles. Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of numerous adenomatous polyps in the colon and rectum. Cases of pancreatoblastoma combined with familial adenomatous polyposis (FAP) are rarely reported. A review of a rare case of adult pancreatoblastoma with atypical histological morphology combined with familial adenomatous polyposis is presented herein. In this case, the patient was first diagnosed with familial adenomatous polyposis and subsequently found to have pancreatoblastoma 1 year and 3 months later. This suggests pancreatoblastoma may occur in patients with familial adenomatous polyposis or a family history of the condition, indicating a possible association between the two tumors. Therefore, pancreatoblastoma should be included in a differential diagnosis for FAP patients with a pancreatic mass. The final diagnosis of pancreatoblastoma depends on the pathological diagnosis. Acinar-like cells and squamous corpuscles/squamous epithelial cell islands under light microscopy are the key diagnostic points. This case report also can improve the awareness of clinicians, radiologists, and pathologists on the presence of rare tumor-adult pancreatoblastoma in patients with familial adenomatous polyposis.

16.
Chem Commun (Camb) ; 60(25): 3413-3416, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38441256

ABSTRACT

A photoredox-catalyzed unsymmetrical diamination of alkenes by using N-aminopyridinium salts and nitriles as the amination reagents has been developed. Various vicinal diamines were obtained in moderate to excellent yields under mild reaction conditions. Furthermore, this protocol could be applied in the late-stage modification of pharmaceuticals and natural products. Preliminary mechanistic studies suggested that this methodology may undergo a radical pathway followed by a Ritter-type reaction.

17.
Dig Liver Dis ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38320913

ABSTRACT

BACKGROUND AND AIMS: Giant esophageal leiomyoma usually requires a thoracotomy or thoracoscopic surgery, which is more invasive than an endoscopic treatment. The purpose of this study is to evaluate the efficacy and safety of piecemeal submucosal tunneling endoscopic resection (P-STER) for giant leiomyoma originating from the muscularis propria (MP) layer of the esophagus. METHODS: This is a retrospective study. Patients with giant esophageal leiomyoma (transverse diameter ≥ 3 cm) who underwent P-STER were enrolled from November 2012 to May 2023. Clinical data and results were investigated. RESULTS: A total of 16 patients were enrolled for analysis. The lesion mean transverse diameter and longitudinal diameter were 4.22 ± 1.20 cm and 6.20 ± 1.57 cm, respectively. Our mean operation time was 195.38 ± 84.99 min. The mean number of piecemeal resected was 4.31 ± 2.36. An adverse event noted was an esophageal fistula that occurred in one case (6.25%) and was treated conservatively. The mean length of hospital stay was around 11.81 ± 7.30 days. The mean total hospitalization cost was U.S. dollars (USD) $5976.50 ± 2866.39. No recurrence or metastasis was found during the follow-up period. CONCLUSIONS: P-STER can be an effective and safe treatment for giant leiomyoma originating from the MP layer of the esophagus.

18.
Gynecol Oncol ; 182: 156-167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266402

ABSTRACT

OBJECTIVE: This study explored promising prognostic and immune therapeutic candidate biomarkers for OC and determined the expression, prognostic value, and immune effects of UCHL3. METHODS: UCHL3 expression and clinical data were investigated using bioinformatic analysis. CCK8 and transwell assays were conducted to evaluate the impact of UCHL3 on proliferation and migration, and the effects of UCHL3 were further validated in a mouse model. Univariate and least absolute shrinkage and selection operator regression analyses were performed to construct a novel UCHL3-related prognostic risk model. Gene set enrichment analysis (GSEA) and immune analysis were performed to identify the significantly involved functions of UCHL3. Finally, bioinformatic analysis and immunohistochemistry were performed to explore the effect of UCHL3 on chemotherapy. RESULTS: UCHL3 expression was upregulated and associated with worse overall survival (OS) in OC. UCHL3 depletion repressed cell proliferation and migration both in vitro and in vivo. Furthermore, 237 genes were differentially expressed between the high and low UCHL3 expression groups. Subsequently, a UCHL3-related prognostic signature was built based on six prognostic genes (PI3, TFAP2B, MUC7, PSMA2, PIK3C2G, and NME1). Independent prognostic analysis suggested that age, tumor mutational burden, and RiskScore can be used as independent prognostic factors. The immune infiltration analysis and GSEA suggested that UCHL3 expression was related to the immune response. In addition, UCHL3 expression was higher in platinum-resistant OC patients than in platinum-sensitive patients. UCHL3 overexpression was associated with poorer OS. CONCLUSION: UCHL3 overexpression contributes to aggressive progression, poor survival, and chemoresistance in OC. Therefore, UCHL3 may be a candidate prognostic biomarker and potential target for controlling progression and platinum resistance in OC.


Subject(s)
Ovarian Neoplasms , Animals , Mice , Female , Humans , Biomarkers , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Aggression , Cell Proliferation , Computational Biology , Platinum , Prognosis , Ubiquitin Thiolesterase/genetics
19.
Environ Pollut ; 344: 123301, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190873

ABSTRACT

The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.


Subject(s)
Microbiota , Periphyton , Sulfamethoxazole/toxicity , Biomass , Water , Anti-Bacterial Agents/toxicity , Aquaculture
20.
Eur J Med Chem ; 265: 116090, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38169272

ABSTRACT

The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Humans , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Cell Proliferation , Models, Molecular , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...