Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Neuromolecular Med ; 21(2): 192-203, 2019 06.
Article in English | MEDLINE | ID: mdl-30980234

ABSTRACT

It has been previously demonstrated that hydrogen sulfide (H2S) prevents formaldehyde (FA)-induced neurotoxicity. However, the exact mechanisms underlying this protection remain to be fully elucidated. Neuronal senescence is involved in FA-induced neurotoxicity. Leptin signaling has anti-aging function. The present work was to investigate the protection of H2S against FA-induced neuronal senescence and the mediatory role of leptin signaling. FA-exposed HT-22 cells were used as the vitro model of FA-induced neuronal senescence. The senescence-associated ß-galactosidase (SA-ß-Gal) positive cell was detected by ß-galactosidase staining. The expressions of P16INK4a, P21CIP1, leptin, and lepRb (leptin receptor) were measured by western blot. The proliferation, viability, and apoptosis of cells were evaluated by Trypan blue exclusion assay, Cell Counting Kit-8 (CCK-8) assay, and Flow cytometry analysis, respectively. We found that H2S suppressed FA-induced senescence, as evidenced by the decrease in SA-ß-Gal positive cells, the downregulations of P16INK4a and P21CIP1, as well as decrease in cell growth arrest, in HT-22 cells. Also, H2S upregulated the expressions of leptin and lepRb in FA-exposed HT-22 cells. Furthermore, leptin tA (a specific inhibitor of the leptin) abolished the protective effects of H2S on FA-induced senescence and neurotoxicity (as evidenced by the increase in cell viability and the decrease in cell apoptosis) in HT-22 cells. These results indicated that H2S prevents FA-induced neuronal senescence via upregulation of leptin signaling. Our findings offer a novel insight into the mechanisms underlying the protection of H2S against FA-induced neurotoxicity. FA upregulates the expressions of P16INK4a and P21CIP1 via inhibiting leptin signaling, which in turn induces senescence in HT-22 cells; H2S downregulates the expressions of P16INK4a and P21CIP1 via reversing FA-downregulated leptin signaling, which in turn prevents FA-induced senescence in HT-22 cells.


Subject(s)
Cellular Senescence/drug effects , Environmental Pollutants/antagonists & inhibitors , Formaldehyde/antagonists & inhibitors , Hydrogen Sulfide/pharmacology , Leptin/physiology , Neurons/drug effects , Sulfides/pharmacology , Animals , Apoptosis/drug effects , Cell Division/drug effects , Cell Line , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Environmental Pollutants/toxicity , Formaldehyde/toxicity , Gene Expression Regulation/drug effects , Genes, p16 , Hippocampus/cytology , Leptin/antagonists & inhibitors , Leptin/biosynthesis , Leptin/genetics , Mice , Neurodegenerative Diseases/chemically induced , Neurons/cytology , Neurons/metabolism , Receptors, Leptin/biosynthesis , Receptors, Leptin/genetics , Signal Transduction/drug effects , Up-Regulation/drug effects
2.
Huan Jing Ke Xue ; 35(5): 1798-803, 2014 May.
Article in Chinese | MEDLINE | ID: mdl-25055669

ABSTRACT

As a visible light photocatalyst, bismuth oxide bromide (BiOBr) was used to catalyze the degradation of beta-cypermethrin (beta-CP). The photocatalytic degradation of beta-CP was studied with gas chromatography. The effects of pH and catalyst dose on the photocatalytic degradation efficiency were discussed. The oxidization and mineralization of beta-CP were detected by chemical oxygen demand (COD) analyzer. The results showed that beta-CP could be effectively degraded under visible light irradiation using BiOBr as the catalyst. At given experimental conditions, the degradation rate of beta-CP reached 94. 68% after 10 h and the COD removal rate reached 67. 99% after 36 h. With the increase of catalyst dose and pH value, the degradation rate was improved. The photocatalytic oxidation species was determined by peroxidase method and terephthalic acid fluorescence method. These results suggested that the photocatalytic degradation process mainly referred to hydroxyl radical ( OH) mechanism.


Subject(s)
Bismuth/chemistry , Light , Pyrethrins/chemistry , Catalysis , Oxidation-Reduction , Photochemical Processes , Pyrethrins/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...