Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(16): 11272-11280, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39088563

ABSTRACT

Herein, we describe the use of benzeneseleninic acid derivatives (BSA) as a bench-stable and easy to handle selenium reagent to access 4-(selanyl)isoquinoline-N-oxides through the selenocyclization of o-alkynyl benzaldehyde oximes. The reaction is conducted in refluxing methanol, allowing the thermal generation of electrophilic selenium species in situ. By this new protocol, a library of 19 selenium-decorated N-oxide isoquinolines was accessed in up to 96% yield with an outstanding substrate tolerance and the feasibility to scale it up 10 times (from 0.25 to 2.5 mmol).

2.
Brain Res ; 1834: 148904, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38561086

ABSTRACT

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Subject(s)
Antidepressive Agents , Dopamine , Monoamine Oxidase , Organoselenium Compounds , Animals , Male , Mice , Antidepressive Agents/pharmacology , Organoselenium Compounds/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/drug effects , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Swimming , Norepinephrine/metabolism , Receptors, Dopamine/metabolism , Receptors, Dopamine/drug effects , Depression/drug therapy , Depression/metabolism , Motor Activity/drug effects
3.
PeerJ ; 12: e17074, 2024.
Article in English | MEDLINE | ID: mdl-38500528

ABSTRACT

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules produced naturally by the body and by external factors. When these species are generated in excessive amounts, they can lead to oxidative stress, which in turn can cause cellular and tissue damage. This damage is known to contribute to the aging process and is associated with age-related conditions, including cardiovascular and neurodegenerative diseases. In recent years, there has been an increased interest in the development of compounds with antioxidant potential to assist in the treatment of disorders related to oxidative stress. In this way, compounds containing sulfur (S) and/or selenium (Se) have been considered promising due to the relevant role of these elements in the biosynthesis of antioxidant enzymes and essential proteins with physiological functions. In this context, studies involving heterocyclic nuclei have significantly increased, notably highlighting the indolizine nucleus, given that compounds containing this nucleus have been demonstrating considerable pharmacological properties. Thus, the objective of this research was to evaluate the in vitro antioxidant activity of eight S- and Se-derivatives containing indolizine nucleus and different substituents. The in vitro assays 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenger activity, ferric ion (Fe3+) reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and protein carbonylation (PC) were used to access the antioxidant profile of the compounds. Our findings demonstrated that all the compounds showed FRAP activity and reduced the levels of TBARS and PC in mouse brains homogenates. Some compounds were also capable of acting as DPPH scavengers. In conclusion, the present study demonstrated that eight novel organochalcogen compounds exhibit antioxidant activity.


Subject(s)
Antioxidants , Selenium , Mice , Animals , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Oxidative Stress , Selenium/chemistry , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL