Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Mol Biol Cell ; 35(3): ar42, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38231876

To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.


Adaptor Proteins, Vesicular Transport , Golgi Apparatus , Lysosomal Membrane Proteins , Adaptor Proteins, Vesicular Transport/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Lysosomes/metabolism , Clathrin/metabolism
2.
Cancer Discov ; 14(1): 120-141, 2024 01 12.
Article En | MEDLINE | ID: mdl-37934001

Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE: Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.


Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Mice , Chromatin , Immunotherapy, Adoptive , Methyltransferases/genetics , Methyltransferases/metabolism , Neoplasms/genetics , Neoplasms/therapy , Recurrence , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Int J Radiat Oncol Biol Phys ; 118(5): 1294-1307, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37778425

PURPOSE: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells. METHODS AND MATERIALS: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu). After drug exposure, cells were irradiated or not and short-term cell survival was assessed by high-throughput cell microscopy. Computational large-scale dose-response and isobolographic approach were used to identify promising synergistic drugs radiosensitizing cancer cells rather than normal cells. Synergy of a promising compound was confirmed on ME-180 cells by an independent 96-well assay protocol, and finally, by the gold-standard colony forming assay. RESULTS: We retained 4 compounds synergistic at 2 isoeffects in U251-MG and ME-180 cell lines and 11 compounds synergistically effective in only one cancer cell line. Among these 15 promising radiosensitizers, 5 compounds showed limited toxicity combined or not with IR on normal fibroblasts. CONCLUSIONS: Overall, this study demonstrated that HTS chemoradiation screening together with large-scale computational analysis is an efficient tool to identify synergistic drug-IR combinations, with concomitant assessment of unwanted toxicity on normal fibroblasts. It sparks expectations to accelerate the discovery of highly desired agents improving the therapeutic index of radiation therapy.


Antineoplastic Agents , Neoplasms , Radiation-Sensitizing Agents , Female , Humans , High-Throughput Screening Assays/methods , Early Detection of Cancer , Radiation-Sensitizing Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor
4.
Sci Rep ; 13(1): 22599, 2023 12 18.
Article En | MEDLINE | ID: mdl-38114550

High content screening (HCS) is a technology that automates cell biology experiments at large scale. A High Content Screen produces a high amount of microscopy images of cells under many conditions and requires that a dedicated image and data analysis workflow be designed for each assay to select hits. This heavy data analytic step remains challenging and has been recognized as one of the burdens hindering the adoption of HCS. In this work we propose a solution to hit selection by using transfer learning without additional training. A pretrained residual network is employed to encode each image of a screen into a discriminant representation. The deep features obtained are then corrected to account for well plate bias and misalignment. We then propose two training-free pipelines dedicated to the two main categories of HCS for compound selection: with or without positive control. When a positive control is available, it is used alongside the negative control to compute a linear discriminant axis, thus building a classifier without training. Once all samples are projected onto this axis, the conditions that best reproduce the positive control can be selected. When no positive control is available, the Mahalanobis distance is computed from each sample to the negative control distribution. The latter provides a metric to identify the conditions that alter the negative control's cell phenotype. This metric is subsequently used to categorize hits through a clustering step. Given the lack of available ground truth in HCS, we provide a qualitative comparison of the results obtained using this approach with results obtained with handcrafted image analysis features for compounds and siRNA screens with or without control. Our results suggests that the fully automated and generic pipeline we propose offers a good alternative to handcrafted dedicated image analysis approaches. Furthermore, we demonstrate that this solution select conditions of interest that had not been identified using the primary dedicated analysis. Altogether, this approach provides a fully automated, reproducible, versatile and comprehensive alternative analysis solution for HCS encompassing compound-based or downregulation screens, with or without positive controls, without the need for training or cell detection, or the development of a dedicated image analysis workflow.


Image Processing, Computer-Assisted , Microscopy , Image Processing, Computer-Assisted/methods , RNA, Small Interfering , Machine Learning
5.
Nat Methods ; 20(10): 1553-1562, 2023 Oct.
Article En | MEDLINE | ID: mdl-37640938

Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.

6.
Cells ; 12(12)2023 06 16.
Article En | MEDLINE | ID: mdl-37371112

Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.


Streptavidin , Humans , Recombinant Proteins/metabolism , Green Fluorescent Proteins/metabolism , Cell Line , Biological Transport
7.
Biol Imaging ; 3: e4, 2023.
Article En | MEDLINE | ID: mdl-38487691

Drug discovery uses high throughput screening to identify compounds that interact with a molecular target or that alter a phenotype favorably. The cautious selection of molecules used for such a screening is instrumental and is tightly related to the hit rate. In this work, we wondered if cell painting, a general-purpose image-based assay, could be used as an efficient proxy for compound selection, thus increasing the success rate of a specific assay. To this end, we considered cell painting images with 30,000 molecules treatments, and selected compounds that produced a visual effect close to the positive control of an assay, by using the Frechet Inception Distance. We then compared the hit rates of such a preselection with what was actually obtained in real screening campaigns. As a result, cell painting would have permitted a significant increase in the success rate and, even for one of the assays, would have allowed to reach 80% of the hits with 10 times fewer compounds to test. We conclude that images of a cell painting assay can be directly used for compound selection prior to screening, and we provide a simple quantitative approach in order to do so.

8.
EMBO Rep ; 23(10): e54605, 2022 10 06.
Article En | MEDLINE | ID: mdl-35979738

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway. Using in situ subcellular live imaging, we show that post-Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6-dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.


Dyneins , rab GTP-Binding Proteins , Dyneins/genetics , Dyneins/metabolism , Golgi Apparatus/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
9.
J Immunol ; 207(2): 421-435, 2021 07 15.
Article En | MEDLINE | ID: mdl-34233909

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Membrane Proteins/immunology , Animals , Endosomes/immunology , Female , Genes, MHC Class II/immunology , Golgi Apparatus/immunology , Immunity, Innate/immunology , Intestinal Mucosa/immunology , Ion Channels/immunology , Lymphocytes/immunology , Lysosomes/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/immunology , Tretinoin/immunology
10.
Nat Commun ; 12(1): 4389, 2021 07 19.
Article En | MEDLINE | ID: mdl-34282141

Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type.


Exosomes/metabolism , Tetraspanin 29/metabolism , Tetraspanin 30/metabolism , Cell Communication , Cell Membrane/metabolism , Endosomes/metabolism , Extracellular Vesicles/metabolism , Fusion Regulatory Protein 1, Heavy Chain , Gene Knockout Techniques , HeLa Cells , Humans , Membrane Proteins/metabolism , Protein Transport , Proteomics
11.
Elife ; 102021 07 28.
Article En | MEDLINE | ID: mdl-34318748

Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.


Caenorhabditis elegans/cytology , DNA/chemistry , Nanotechnology/methods , Nucleic Acids/chemistry , Animals , Biosensing Techniques/instrumentation , Caenorhabditis elegans/metabolism , Nanostructures/chemistry , Nucleic Acids/metabolism
12.
EMBO J ; 40(8): e107238, 2021 04 15.
Article En | MEDLINE | ID: mdl-33749896

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Cell Proliferation , Glycosphingolipids/biosynthesis , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Cells, Cultured , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Proteins/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Signal Transduction
13.
Sci Adv ; 7(2)2021 01.
Article En | MEDLINE | ID: mdl-33523982

The biosynthetic secretory pathway is particularly challenging to investigate as it is underrepresented compared to the abundance of the other intracellular trafficking routes. Here, we combined the retention using selective hook (RUSH) to a CRISPR-Cas9 gene editing approach (eRUSH) and identified Rab7-harboring vesicles as an important intermediate compartment of the Golgi-to-plasma membrane transport of neosynthesized transferrin receptor (TfR). These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles. Rab7A was transiently associated to neosynthetic TfR-containing post-Golgi vesicles but dissociated before fusion with the plasma membrane. Together, our study reveals a role for Rab7 in the biosynthetic secretory pathway of the TfR, highlighting the diversity of the secretory vesicles' nature.

14.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Article En | MEDLINE | ID: mdl-33259646

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Pandemics , Paris/epidemiology , Seroepidemiologic Studies , Time Factors
15.
Methods Mol Biol ; 2233: 253-264, 2021.
Article En | MEDLINE | ID: mdl-33222140

Proteins destined to be exposed to the extracellular space enter the secretory pathway at the level of the endoplasmic reticulum. Proteins are then transported to the Golgi apparatus and addressed to their destination compartment, such as the plasma membrane for exocytic cargos. Exocytosis constitutes the last step of the anterograde transport of secretory cargos. Exocytic vesicles fuse with the plasma membrane, releasing soluble proteins to the extracellular milieu and transmembrane proteins to the plasma membrane. In order to monitor local exocytosis of cargos, we describe in this chapter how to perform synchronization of the anterograde transport of an exocytic cargo of interest using the retention using selective hooks (RUSH) assay in combination with selective protein immobilization (SPI). SPI is based on the coating of coverslips with anti-green fluorescent protein (GFP) antibodies, which capture the GFP-tagged RUSH cargos once exposed to the cell surface after its release by the addition of biotin.


Exocytosis/genetics , Golgi Apparatus/genetics , Molecular Biology/methods , Secretory Pathway/genetics , Animals , Cell Membrane/genetics , Endoplasmic Reticulum/genetics , Green Fluorescent Proteins/genetics , Humans , Membrane Proteins/genetics , Protein Transport/genetics , Secretory Vesicles/genetics
16.
Cancers (Basel) ; 12(11)2020 Nov 10.
Article En | MEDLINE | ID: mdl-33182650

The fibroblast growth factor receptor 4 (FGFR4) is overexpressed in rhabdomyosarcoma (RMS) and represents a promising target for treatments based on specific and efficient antibodies. Despite progress, there is an urgent need for targeted treatment options to improve survival rates, and to limit long-term side effects. From phage display libraries we selected FGFR4-specific single-domain antibodies (sdAb) binding to recombinant FGFR4 and validated them by flow cytometry, surface plasmon resonance, and fluorescence microscopy. The specificity of the selected sdAb was verified on FGFR4-wild type and FGFR4-knock out cells. FGFR4-sdAb were used to decorate vincristine-loaded liposomes and to generate chimeric antigen receptor (CAR) T cells. First, incubation of RMS cells with FGFR4-sdAb revealed that FGFR4-sdAb can block FGF19-FGFR4 signaling via the MAPK pathway and could therefore serve as therapeutics for FGFR4-dependent cancers. Second, FGFR4-targeted vincristine-loaded liposomes bound specifically to RMS cells and were internalized by the receptor, demonstrating the potential for active drug delivery to the tumor. Third, FGFR4-CAR T cells, generated with one sdAb candidate, demonstrated strong and specific cytotoxicity against FGFR4 expressing RMS cells. We selected novel FGFR4-sdAb with high specificity and nano- to picomolar affinities for FGFR4 which have the potential to enable multiple FGFR4-targeted cancer therapy approaches.

17.
J Cell Biol ; 219(8)2020 08 03.
Article En | MEDLINE | ID: mdl-32479594

Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.


Breast Neoplasms/enzymology , Extracellular Matrix/enzymology , Golgi Apparatus/enzymology , Macrophages/enzymology , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Nucleobindins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Calcium/metabolism , Calcium Signaling , Cell Movement , Extracellular Matrix/pathology , Female , Gelatin/metabolism , HEK293 Cells , HeLa Cells , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/genetics , Nucleobindins/genetics , Protein Transport , Proteolysis , Time Factors
18.
iScience ; 23(4): 100987, 2020 Apr 24.
Article En | MEDLINE | ID: mdl-32224433

Human mononuclear phagocytes comprise several subsets of dendritic cells (DCs), monocytes, and macrophages. Distinguishing one population from another is challenging, especially in inflamed tissues, owing to the promiscuous expression of phenotypic markers. Using a synthetic library of humanized llama single domain antibodies, we identified a novel surface marker for human naturally occurring monocyte-derived DCs. Our antibody targets an extra-cellular domain of LSP-1, specifically on monocyte-derived DCs, but not on other leukocytes, in particular monocytes, macrophages, classical DCs, or the recently described blood DC3 population. Our findings will pave the way for a better characterization of human mononuclear phagocytes in pathological settings.

19.
J Cell Sci ; 133(2)2020 01 29.
Article En | MEDLINE | ID: mdl-31996399

Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.


Microtubules/metabolism , Protein Transport/genetics , Humans
...