Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Chempluschem ; 89(6): e202300690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426670

ABSTRACT

In this work, we describe the synthesis of new 4-organyl-5-(organylselanyl)thiazol-2-amine hybrids through a one-pot two-step protocol. The transition metal-free method involves the use of ultrasound as an alternative energy source and Oxone® as oxidant. To obtain the products, a telescoping approach was used, in which 4-organylthiazol-2-amines were firstly prepared under ultrasonic irradiation, followed by the addition of diorganyl diselenides and Oxone®. Thus, 16 compounds were prepared, with yields ranging from 61 % to 98 %, using 2-bromoacetophenone derivatives and diorganyl diselenides as easily available starting materials.

2.
Chemistry ; 29(59): e202301934, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37544915

ABSTRACT

Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.

3.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446698

ABSTRACT

A general methodology to access valuable 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines was developed by the reaction of 2-azidobenzaldehyde with phenylchalcogenylacetonitriles (sulfur and selenium) in the presence of potassium carbonate (20 mol%) as a catalyst. The reactions were conducted using a mixture of dimethylsulfoxide and water (7:3) as solvent at 80 °C for 4 h. This new methodology presents a good functional group tolerance to electron-deficient and electron-rich substituents, affording a total of twelve different 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines selectively in moderate to excellent yields. The structure of the synthesized 4-(phenylselanyl)tetrazolo[1,5-a]quinoline was confirmed by X-ray analysis.


Subject(s)
Quinolines , Quinolines/chemistry , Water , Solvents , Catalysis , Dimethyl Sulfoxide
4.
Org Biomol Chem ; 20(45): 8952-8961, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36326093

ABSTRACT

We report a strategy for the direct synthesis of 3-organylselanylthiochromones and 3-organylselanylchromones via the radical cyclization reaction between alkynyl aryl ketones containing an ortho-thiopropyl/methoxy group and diorganyl diselenides promoted by Oxone®. This method allows the construction and seleno-functionalization of thiochromones and chromones using Oxone® as a stable and non-hazardous oxidizing agent in the presence of CH3CN at 82 °C. These reactions tolerate a variety of substituents, and allowed the synthesis of twenty-one new 3-organylselanylthiochromones and selanylchromones in good to excellent yields (55-95%). Additionally, the developed method proved to be suitable for scale up (3.0 mmol, 80%), and the synthetic usefulness of the prepared compounds was demonstrated in the oxidation of 2-phenyl-3-(phenylselanyl)-4H-thiochromen-4-one.


Subject(s)
Chromones , Ketones , Cyclization , Catalysis
5.
J Org Chem ; 87(22): 15050-15060, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36302502

ABSTRACT

We describe here for the first time the synthesis of 2-(chalcogenyl)-3H-benzo[f]chromenes and the new 3-(phenylselanyl)-2H-chromenes by the radical or electrophilic cyclization of propargylic aryl ethers in the presence of diorganyl diselenides or ditellurides using Oxone as a green oxidant and acetonitrile as solvent in a sealed tube at 100 °C. In this study, thirty-one chalcogenylchromenes with a broad substrate scope were prepared in moderate to excellent yields (50-98%), including compounds derived from natural products.


Subject(s)
Benzopyrans , Ethers , Cyclization , Molecular Structure , Ethers/chemistry , Benzopyrans/chemistry
6.
J Org Chem ; 87(6): 4273-4283, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35245049

ABSTRACT

We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C. The protocol is operationally simple and scalable, exhibits high regioselectivity, and allows the synthesis of 24 dibenzocycloheptenones/spiro[5.5]trienones in yields of up to 99%, 17 of which are unpublished compounds. Additionally, synthetic transformations of the prepared compounds, such as oxidation and reduction reactions, are demonstrated.


Subject(s)
Spiro Compounds , Cyclization , Oxidation-Reduction , Solvents
7.
Chem Biodivers ; 19(5): e202100793, 2022 May.
Article in English | MEDLINE | ID: mdl-35293125

ABSTRACT

The present study reports a simple two-step method for the synthesis of arylselanyl hydrazide derivatives using hypophosphorous acid and polyethylene glycol (H3 PO2 /PEG-400) as an alternative reducing system and hydrazine hydrate (NH2 NH2 ⋅xH2 O/50-60 %). This single-vessel procedure was employed with methyl acrylate 2a and methyl bromoacetate 2b using diaryl diselenides to generate the nucleophile species to produce, respectively, 3-(arylselanyl)propane-hydrazides 4a-e and 2-(arylselanyl)acetohydrazides 5a-e with good yields by accelerating the reduction of -Se-Se- bond, when compared to available methods. The synthesized molecules are structurally similar to the isoniazid (INH). Therefore, we perform in silico molecular docking studies, using the lactoperoxidase enzyme, in order to verify whether the INH Se derivatives could interact in a similar way to INH at the active site of the mammalian enzyme. The in silico results indicated a similar type of interaction of the arylselanyl hydrazide derivatives with that of INH. In view of the similar in silico interaction of the selenium derivatives of INH, the arylselanyl hydrazide derivatives reported here should be tested against Mycobacterium tuberculosis in vitro.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Animals , Hydrazines , Isoniazid/chemistry , Isoniazid/pharmacology , Mammals , Molecular Docking Simulation
8.
Chem Asian J ; 17(8): e202101394, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35294794

ABSTRACT

A metal- and catalyst-free photo-promoted cyclization of properly substituted vinyl selenides was developed using UVA irradiation. A total of eighteen new C3-unsubstituted 2-selanyl benzochalcogenophenes (benzofurans, benzothiophenes and benzoselenophenes) were prepared in 30-86% yield after irradiation with UVA at room temperature. The usefulness of the title compounds was demonstrated in the easy functionalization of the remaining free C-H bond of the benzochalcogenophenes to form new C-Se and C-Br bonds by simple procedures. Furthermore, the reaction can be performed under natural sunlight irradiation and the solvent is easily reused further in several subsequent runs.


Subject(s)
Benzofurans , Ultraviolet Rays , Catalysis , Cyclization , Solvents
9.
Molecules ; 26(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34946605

ABSTRACT

Oxone is a commercially available oxidant, composed of a mixture of three inorganic species, being the potassium peroxymonosulfate (KHSO5) the reactive one. Over the past few decades, this cheap and environmentally friendly oxidant has become a powerful tool in organic synthesis, being extensively employed to mediate the construction of a plethora of important compounds. This review summarizes the recent advances in the Oxone-mediated synthesis of N-, O- and chalcogen-containing heterocyclic compounds, through a wide diversity of reactions, starting from several kinds of substrate, highlighting the main synthetic differences, advantages, the scope and limitations.

10.
ACS Chem Neurosci ; 12(19): 3760-3771, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34553902

ABSTRACT

Despite major advances, not all patients achieve rheumatoid arthritis (RA) remission, thus highlighting a pressing need for new therapeutic treatments. Given this scenario, this study sought to evaluate Se-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl] 4-chlorobenzoselenolate (Se-DMC) potential on a complete Freund's adjuvant (CFA)-induced unilateral arthritis model. The effects of Se-DMC (5 mg/kg; oral dose) and meloxicam (5 mg/kg; oral dose), both administered to animals daily for 14 days, on paw edema, mechanical sensitivity, neurobehavioral deficits (anxiogenic- and depressive-like behaviors), Na+/K+-ATPase activity, oxidative stress, and inflammation were evaluated in male Swiss mice exposed to CFA (intraplantar injection of 0.1 mL; 10 mg/mL). Se-DMC reduced the paw withdrawal threshold and CFA-induced paw edema. Histopathological results revealed the antiedematogenic potential of the compound, which was evidenced by lower quantities of dilated lymphatic vessels compared with the CFA group. Se-DMC reduced mRNA relative expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the hippocampus and paw of CFA mice. The CFA-induced anxiogenic- and depressive-like behaviors were reversed by Se-DMC to the control levels in the elevated plus-maze and tail suspension tests. Se-DMC reduced the paw reactive species levels and restored the superoxide dismutase (hippocampus and paw) and Na+/K+-ATPase (hippocampus) activities previously increased by CFA. Moreover, CFA administration inhibited serum creatinine kinase activity, albeit the Se-DMC effects did not appear to involve the modulation of this enzyme and were equal to or greater than meloxicam. Se-DMC attenuates CFA-induced inflammatory response, nociception, and neurobehavioral deficits in mice.


Subject(s)
Arthritis, Rheumatoid , Nociception , Animals , Arthritis, Rheumatoid/drug therapy , Freund's Adjuvant/toxicity , Humans , Inflammation/drug therapy , Male , Mice , Mood Disorders
11.
Chem Biol Interact ; 345: 109564, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34161785

ABSTRACT

Suppressive effect of bis (3-amino-2-pyridine) diselenide (BAPD) on psychiatric disorders - atopic dermatitis (AD) comorbidity in mice was investigated. To sensitize the animals, 2,4-dinitrochlorobenzene (DNCB) was applied to their dorsal skin on days 1-3. Mice were challenged with DNCB on their ears and dorsal skin on days 14, 17, 20, 23, 26, and 29. BAPD and Dexamethasone were administered to the animals, from days 14-29, and skin severity scores and behavioral tests were determined. Oxidative stress and inflammatory parameters were evaluated on the dorsal skin of mice. Na+, K+-ATPase activity and corticosterone levels were determined in hippocampus/cerebral cortex and plasma of mice, respectively. BAPD improved cutaneous damage, scratching behavior, inflammatory and oxidative stress markers. BAPD showed anxiolytic- and antidepressant-like effects and restored Na+, K+-ATPase activity and corticosterone levels. The present study was performed using female mice due the susceptibility for this disease. But, the evaluation of AD model in male mice would help to verify whether the male gender has the same predisposition to present this pathology. Our data demonstrated the suppressive effect of BAPD on psychiatric disorders - AD comorbidity by regulating inflammatory and oxidative status in mice.


Subject(s)
Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/epidemiology , Mental Disorders/drug therapy , Mental Disorders/epidemiology , Siloxanes/pharmacology , Animals , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Comorbidity , Corticosterone/blood , Corticosterone/metabolism , Dermatitis, Atopic/complications , Dermatitis, Atopic/metabolism , Female , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/complications , Mental Disorders/complications , Mental Disorders/metabolism , Mice , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Siloxanes/therapeutic use
12.
Molecules ; 26(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921844

ABSTRACT

We describe herein an alternative transition-metal-free procedure to access 3,4-bis(butylselanyl)selenophenes and the so far unprecedented 3-(butylselanyl)-4-alkoxyselenophenes. The protocol involves the 5-endo-dig electrophilic cyclization of 1,3-diynes promoted by electrophilic organoselenium species, generated in situ through the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® as a green oxidant. The selective formation of the title products was achieved by controlling the solvent identity and the amount of dibutyl diselenide. By using 4.0 equiv of dibutyl diselenide and acetonitrile as solvent at 80 °C, four examples of 3,4-bis(butylselanyl)selenophenes were obtained in moderate to good yields (40-78%). When 3.0 equiv of dibutyl diselenide were used, in the presence of aliphatic alcohols as solvent/nucleophiles under reflux, 10 3-(butylselanyl)-4-alkoxyselenophenes were selectively obtained in low to good yields (15-80%).

13.
J Org Chem ; 86(20): 14016-14027, 2021 10 15.
Article in English | MEDLINE | ID: mdl-33750133

ABSTRACT

A new method was developed for the synthesis of 4-chalcogenyl-1H-isochromen-1-ones through the 6-endo-dig electrophilic cyclization of 2-alkynylaryl esters and diorganyl dichalcogenides under ultrasound irradiation. The reactions were performed under mild conditions, using Oxone as a green oxidant to promote the cleavage of the chalcogen-chalcogen bond in diorganyl diselenides and ditellurides to generate electrophilic species in situ. A total of 25 compounds were selectively obtained after 30-70 min, in good to excellent yields (74-95%). This procedure was extended to prepare 5H-selenopheno[3,2-c]isochromen-5-ones. Additionally, for the first time, the 4-chalcogenyl-1H-isochromen-1-ones were used as substrates in the thionation reaction, using Lawesson's reagent and microwave irradiation under solvent-free conditions, obtaining the thio derivatives in yields of up to 99% in only 15 min.


Subject(s)
Molecular Structure , Catalysis , Cyclization , Solvents , Sulfuric Acids
14.
Chem Rec ; 21(10): 2855-2879, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33735500

ABSTRACT

The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.

15.
Org Biomol Chem ; 19(3): 596-604, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33355583

ABSTRACT

We describe herein an alternative and transition-metal-free procedure for the access of benzo[b]chalcogenophenes fused to selenophenes via intramolecular cyclization of 1,3-diynes. This efficient protocol involves a double cyclization of 1,3-diynyl chalcogen derivatives promoted by the electrophilic species of organoselenium generated in situ by the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® in acetonitrile as solvent in an open-flask at 80 °C. In this study, 15 selenophenes with broad substrate scope were prepared in moderate to excellent yields (55-98%) with short reaction times (0.5-3.0 h).

16.
J Org Chem ; 86(2): 1721-1729, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33382609

ABSTRACT

We report a protocol for the synthesis of 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides via electrophilic cyclization between alkynylbenzaldoximes and diorganyl dichalcogenides promoted by Oxone. A total of 21 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides were selectively obtained in yields of up 93% under an ultrasound irradiation condition in short reaction times (10-70 min). Additionally, the synthetic usefulness of the 3-phenyl-4-(phenylselanyl)isoquinoline-2-oxide was demonstrated in the annulation reaction with 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one and in the deoxygenation reaction with phenylboronic acid.

17.
Eur J Med Chem ; 213: 113052, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33272781

ABSTRACT

In this contribution, a metal- and base-free protocol has been developed for the synthesis of phosphorochalcogenoates (Se and Te) by using DMSO as solvent at 50 °C. A variety of phosphorochalcogenoates were prepared from diorganyl dichalcogenides and H-phosphonates, leading to the formation of a Chal-P(O) bond, in a rapid procedure with good to excellent yields. A full structural elucidation of products was accessed by 1D and 2D NMR, IR, CGMS, and HRMS analyses, and a stability evaluation of the phosphorochalcogenoates was performed for an effective operational description of this simple and feasible method. Typical 77Se{1H} (δSe = 866.0 ppm), 125Te{1H} (δTe = 422.0 ppm) and 31P{1H} (δP = -1.0, -13.0 and -15.0 ppm) NMR chemical shifts were imperative to confirm the byproducts, in which this stability study was also important to select some products for pharmacological screening. The phosphorochalcogenoates were screened in vitro and ex vivo tests for the antioxidant potential and free radical scavenging activity, as well as to investigation toxicity in mice through of the plasma levels of markers of renal and hepatic damage. The pharmacological screening of phosphorochalcogenoates indicated that compounds have antioxidant propriety in different assays and not changes plasma levels of markers of renal and hepatic damage, with excision of 3g compound that increased plasma creatinine levels and decreased plasma urea levels when compared to control group in the blood mice. Thus, these compounds can be promising synthetic antioxidants that provide protection against oxidative diseases.


Subject(s)
Antioxidants/chemical synthesis , Free Radical Scavengers/chemical synthesis , Green Chemistry Technology/methods , Organophosphonates/chemical synthesis , Selenium Compounds/chemistry , Tellurium/chemistry , Animals , Antioxidants/pharmacology , Biomarkers/blood , Brain , Chalcogens/chemistry , Drug Evaluation, Preclinical , Free Radical Scavengers/pharmacology , Free Radicals/metabolism , Glutathione Peroxidase/metabolism , Humans , Kidney , Liver , Male , Mice , Organophosphonates/pharmacology , Oxidation-Reduction , Solvents/chemistry , Structure-Activity Relationship , Superoxide Dismutase/metabolism
18.
Molecules ; 25(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322179

ABSTRACT

The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.


Subject(s)
Chemistry Techniques, Synthetic , Heterocyclic Compounds/chemical synthesis , Organoselenium Compounds/chemical synthesis , Chemistry Techniques, Synthetic/methods , Chemistry Techniques, Synthetic/trends , Cyclization , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Molecular Structure , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology
19.
ChemMedChem ; 15(18): 1741-1751, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32667720

ABSTRACT

An alternative method to prepare 2-organylchalcogenopheno[2,3-b]pyridines was developed by the insertion of chalcogen species (selenium, sulfur or tellurium), generated in situ, into 2-chloro-3-(organylethynyl)pyridines by using the NaBH4 /PEG-400 reducing system, followed by an intramolecular cyclization. It was possible to obtain a series of compounds with up to 93 % yield in short reaction times. Among the synthesized products, 2-organyltelluropheno[2,3-b]pyridines have not been described in the literature so far. Moreover, the compounds 2-phenylthieno[2,3-b]pyridine (3 b) and 2-phenyltelluropheno[2,3-b]pyridine (3 c) exhibited significant antioxidant potential in different in vitro assays. Further studies demonstrated that compound 3 b exerted an antinociceptive effect in acute inflammatory and non-inflammatory pain models, thus indicating the involvement of the central and peripheral nervous systems on its pharmacological action. More specifically, our results suggest that the intrinsic antioxidant property of compound 3 b might contribute to attenuating the nociception and inflammatory process on local injury induced by complete Freund's adjuvant (CFA).


Subject(s)
Analgesics/pharmacology , Antioxidants/pharmacology , Borohydrides/chemistry , Chalcogens/chemistry , Inflammation/drug therapy , Pain/drug therapy , Polyethylene Glycols/chemistry , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Freund's Adjuvant/adverse effects , Inflammation/chemically induced , Male , Mice , Molecular Structure , Oxidation-Reduction , Pain/chemically induced
20.
ChemMedChem ; 15(7): 610-622, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32012463

ABSTRACT

We described here our results on the use of thiourea as a ligand in the copper catalysed azide-alkyne cycloaddition (CuAAC) of 2-azidobenzaldehyde with alkynes. Reactions were performed reacting 2-azidobenzaldehyde with a range of terminal alkynes using 10 mol % of copper iodide as a catalyst, 20 mol % of thiourea as a ligand, triethylamine as base, DMSO as solvent at 100 °C under nitrogen atmosphere. The corresponding 2-(1H-1,2,3-triazoyl)-benzaldehydes (2-TBH) were obtained in moderated to excellent yields and according our experiments, the use of thiourea decreases the formation of side products. The obtained compounds were screened for their binding affinity with multiple therapeutic targets of AD by molecular docking: ß-secretase (BACE), glycogen synthase kinase (GSK-3ß) and acetylcholinesterase (AChE). The three compounds with highest affinity, 5 a (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzaldehyde), 5 b (2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzaldehyde), and 5 d (2-(4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazol-1-yl)benzaldehyde) were selected and evaluated on its antioxidant effect, in view of select the most promising one to perform the in vivo validation. Due the antioxidant potential ally to the affinity with BACE, GSK-3ß and AChE, compound 5 b was evaluated in a mouse model of AD induced by intracerebroventricular injection of streptozotocin (STZ). Our results indicate that 5 b (1 mg/kg) treatment during 20 days is able to reverse the cognitive and memory impairment induced by STZ trough the modulation of AChE activity, amyloid cascade and GSK-3ß expression.


Subject(s)
Alzheimer Disease/drug therapy , Benzaldehydes/pharmacology , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Behavior, Animal/drug effects , Benzaldehydes/chemical synthesis , Benzaldehydes/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Disease Models, Animal , Male , Mice , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...