Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 18(1)2022 12 15.
Article in English | MEDLINE | ID: mdl-36537718

ABSTRACT

Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.


Subject(s)
Bivalvia , Neural Stem Cells , Animals , Hydrogels/chemistry , Adhesives/chemistry , Proteins/chemistry , Polymers/chemistry , Dihydroxyphenylalanine/chemistry
2.
Adv Healthc Mater ; 11(23): e2201164, 2022 12.
Article in English | MEDLINE | ID: mdl-36177684

ABSTRACT

Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electric field application by proliferating, differentiating, and undergoing rapid and directed cathodal migration. Harnessing NPC potential is a promising strategy to facilitate neural repair following injury or disease. The use of electric fields to activate NPCs is limited by current electrode designs which are typically made of conductive metals that are stiff and can lead to neuroinflammation following implantation, in part due to the mechanical mismatch between physiological conditions and material. Herein, the design of a novel, injectable biobased soft electrode with properties suitable for electrical stimulation in vivo is explored. The recent interest in using biologically derived polymers which are relatively abundant and afford economic feasibility have been built upon. Sodium alginate is utilized to form soft hydrogels, thereby addressing the issue of mechanical mismatch, and the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), to generate an innovative new material. It is demonstrated that the optimized alginate PEDOT blend matches the modulus of the brain and is suitable for injection and is not cytotoxic to neural cells. Furthermore, in vivo studies demonstrate minimal activation of inflammatory cells upon implantation in the brain compared to classically used platinum-based electrodes.


Subject(s)
Alginates , Neural Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL