Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 128: 270-274, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755547

ABSTRACT

Coincidence and time-of-flight measurement techniques are employed to tag fission neutrons emitted from a 252Cf source sealed on one side with a very thin layer of Au. The source is positioned within a gaseous 4He scintillator detector. Together with α particles, both light and heavy fission fragments pass through the thin layer of Au and are detected. The fragments enable the corresponding fission neutrons, which are detected in a NE-213 liquid-scintillator detector, to be tagged. The resulting continuous polychromatic beam of tagged neutrons has an energy dependence that agrees qualitatively with expectations. We anticipate that this technique will provide a cost-effective means for the characterization of neutron-detector efficiency in the energy range 1-6MeV.

2.
Appl Radiat Isot ; 127: 98-102, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28564615

ABSTRACT

Untagged gamma-ray and tagged-neutron yields from 241AmBe and 238PuBe mixed-field sources have been measured. Gamma-ray spectroscopy measurements from 1 to 5MeV were performed in an open environment using a CeBr3 detector and the same experimental conditions for both sources. The shapes of the distributions are very similar and agree well with previous data. Tagged-neutron measurements from 2 to 6MeV were performed in a shielded environment using a NE-213 liquid-scintillator detector for the neutrons and a YAP(Ce) detector to tag the 4.44MeVgamma-rays associated with the de-excitation of the first-excited state of 12C. Again, the same experimental conditions were used for both sources. The shapes of these distributions are also very similar and agree well with previous data, each other, and the ISO recommendation. Our 238PuBe source provides approximately 2.6 times more 4.44MeVgamma-rays and 2.4 times more neutrons over the tagged-neutron energy range, the latter in reasonable agreement with the original full-spectrum source-calibration measurements performed at the time of their acquisition.

SELECTION OF CITATIONS
SEARCH DETAIL
...