Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
2.
Environ Pollut ; 317: 120767, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36455768

ABSTRACT

Ochratoxin A (OTA) contamination and the associated issues of food security, food safety and economic loss are widespread throughout the world. The occurrence of OTA depends on ochratoxigenic fungi, foodstuffs and their environment. In this review, natural occurrence and control strategy of OTA, with a focus on the impact of environmental factors, are summarized. First, this manuscript introduces potentially contaminated foodstuffs, including the emerging ones which are not regulated in international legislation. Secondly, it gives an update of native producers based on foodstuffs and OTA biosynthesis. Thirdly, complicated environmental regulation is disassembled into individual factors in order to clarify their regulatory effect and mechanism. Finally, to emphasize control OTA at all stages of foodstuffs from farm to table, strategies used at crop planting, harvest, storage and processing stages are discussed.


Subject(s)
Aspergillus , Ochratoxins , Food Contamination/analysis , Ochratoxins/analysis , Food Safety
3.
Foods ; 11(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35804730

ABSTRACT

In this study, eight lactic acid bacteria (LAB) strains, previously isolated from traditional and gluten-free sourdoughs, and selected for their potential in improving the sensory and rheological quality of bakery products, were screened against some common spoilage agents. The anti-mould activity was tested using strains of the species Fusarium graminearum, Aspergillus flavus, Penicillium paneum and Aspergillus niger. Regarding the antibacterial activity, it was assessed against four strains of the species Escherichia coli, Campylobacter jejuni, Salmonella typhimurium and Listeria monocytogenes. Furthermore, LAB strains were evaluated for their ability to produce exopolysaccharides, which are gaining considerable attention for their functional properties and applicability in different food industrial applications. A strain-specific behaviour against the moulds was observed. In particular, F. graminearum ITEM 5356 was completely inhibited by all the LAB strains. Regarding the antibacterial activity, the strains Leuconostoc citreum UMCC 3011, Lactiplantibacillus plantarum UMCC 2996, and Pediococcus pentosaceus UMCC 3010 showed wide activity against the tested pathogens. Moreover, all the LAB strains were able to produce exopolysaccharides, which were preliminarily characterized. The assessed features of the LAB strains allow us to consider them as promising candidates for single or multiple starter cultures for food fermentation processes.

4.
Toxins (Basel) ; 13(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34941729

ABSTRACT

Ochratoxin A (OTA) is a well-known mycotoxin with wide distribution in food and feed. Fungal genome sequencing has great utility for identifying secondary metabolites gene clusters for known and novel compounds. A comparative analysis of the OTA-biosynthetic cluster in A. steynii, A. westerdijkiae, A. niger, A. carbonarius, and P. nordicum has revealed a high synteny in OTA cluster organization in five structural genes (otaA, otaB, ota, otaR1, and otaD). Moreover, a recent detailed comparative genome analysis of Aspergilli OTA producers led to the identification of a cyclase gene, otaY, located in the OTA cluster between the otaA and otaB genes, encoding for a predicted protein with high similarity to SnoaLs domain. These proteins have been shown to catalyze ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. In the present study, we demonstrated an upregulation of the cyclase gene in A. carbonarius under OTA permissive conditions, consistent with the expression trends of the other OTA cluster genes and their role in OTA biosynthesis by complete gene deletion. Our results pointed out the involvement of a cyclase gene in OTA biosynthetic pathway for the first time. They represent a step forward in the understanding of the molecular basis of OTA biosynthesis in A. carbonarius.


Subject(s)
Aspergillus/chemistry , Aspergillus/genetics , Biosynthetic Pathways/genetics , Genome, Fungal , Ochratoxins/biosynthesis , Secondary Metabolism/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Genetic Variation , Genotype
5.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360643

ABSTRACT

Filamentous fungi are able to synthesise a remarkable range of secondary metabolites, which play various key roles in the interaction between fungi and the rest of the biosphere, determining their ecological fitness. Many of them can have a beneficial activity to be exploited, as well as negative impact on human and animal health, as in the case of mycotoxins contaminating large quantities of food, feed, and agricultural products worldwide and posing serious health and economic risks. The elucidation of the molecular aspects of mycotoxin biosynthesis has been greatly sped up over the past decade due to the advent of next-generation sequencing technologies, which greatly reduced the cost of genome sequencing and related omic analyses. Here, we briefly highlight the recent progress in the use and integration of omic approaches for the study of mycotoxins biosynthesis. Particular attention has been paid to genomics and transcriptomic approaches for the identification and characterisation of biosynthetic gene clusters of mycotoxins and the understanding of the regulatory pathways activated in response to physiological and environmental factors leading to their production. The latest innovations in genome-editing technology have also provided a more powerful tool for the complete explanation of regulatory and biosynthesis pathways. Finally, we address the crucial issue of the interpretation of the combined omics data on the biology of the mycotoxigenic fungi. They are rapidly expanding and require the development of resources for more efficient integration, as well as the completeness and the availability of intertwined data for the research community.


Subject(s)
Fungi/physiology , Gene Expression Regulation, Fungal , Mycotoxins/biosynthesis , Animals , Biosynthetic Pathways , Genomics , Humans , Mycotoxins/genetics
6.
Fungal Biol ; 125(2): 115-122, 2021 02.
Article in English | MEDLINE | ID: mdl-33518201

ABSTRACT

Little is known on the impact that climate change (CC) may have on Aspergillus carbonarius and Ochratoxin A (OTA) contamination of grapes, especially in the Mediterranean region where in CC scenarios temperature are expected to increase by +2-5 °C and CO2 from 400 to 800/1200 ppm. This study examined the effect of (i) current and increased temperature in the alternating 11.5 h dark/12.5 h light cycle (15-28 °C vs 18-34 °C), representative of the North Apulia area, South Italy and (ii) existing and predicted CO2 concentrations (400 vs 1000 ppm), on growth, expression of biosynthetic genes (AcOTApks, AcOTAnrps, AcOTAhal, AcOTAp450, AcOTAbZIP) and regulatory genes of Velvet complex (laeA/veA/velB, "velvet complex") involved in OTA biosynthesis and OTA phenotypic production by three strains of A. carbonarius. The experiments made on a grape-based matrix showed that elevated CO2 resulted in a general stimulation of growth and OTA production. These results were also supported by the up-regulation of both structural and regulatory genes involved in the OTA biosynthesis. Our work has shown for the first time that elevated CO2 concentration in the Mediterranean region may result in an increased risk of OTA contamination in the wine production chain.


Subject(s)
Aspergillus , Climate Change , Gene Expression , Ochratoxins , Vitis , Aspergillus/genetics , Aspergillus/growth & development , Aspergillus/metabolism , Carbon Dioxide , Italy , Ochratoxins/metabolism , Temperature , Vitis/chemistry
7.
Int J Food Microbiol ; 338: 108996, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33279787

ABSTRACT

Ochratoxin A (OTA) occurrence in grapes is caused by black Aspergilli (Aspergillus carbonarius followed by A. niger) vineyards contamination. It depends on climatic conditions, geographical regions, damage by insects, and grape varieties. Good agricultural practices, pesticides, and fungicides seem adequate to manage the problem during low OTA risk vintages, but the development of new strategies is always encouraged, especially when an extremely favourable condition occurs in the vineyard. Electrolysed oxidising water (EOW) has become an interesting alternative to chemicals in agriculture, mainly during the post-harvest phase. This study tested the fungicidal efficacy of EOW generated by potassium chloride, in vitro, on black Aspergilli conidia, and detached grape berries infected by A. carbonarius. Then, during field trials on Primitivo cv vineyard treated with EOW, A. carbonarius contamination, and OTA levels were compared with Switch® fungicide treatment (0.8 g/l). Black Aspergilli conidia were killed on plate assay after 2 min of treatment by EOW containing >0.4 g/l of active chlorine. EOW (0.6 g/l active chlorine) treatment reduced the rate of A. carbonarius infections in vitro of about 87-92% on detached berries and, more than half in the field trials, although Switch® showed better performance. A significant reduction in the OTA concentration was observed for the EOW and Switch® treatments in vitro (92% and 96%, respectively), while in the field trials, although the average decrease in OTA was recorded in the treated grapes, it was not statistically significant. These results highlighted that EOW could be considered effective, as a substitute for fungicides, to reduce the contamination of A. carbonarius and OTA on grapes.


Subject(s)
Aspergillus/drug effects , Food Microbiology/methods , Ochratoxins/chemistry , Vitis/microbiology , Water/chemistry , Food Contamination/prevention & control , Fungicides, Industrial/chemistry , Water/pharmacology
8.
Plants (Basel) ; 9(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271773

ABSTRACT

This research evaluates biological control agents (BCAs) and fungicide alone and in combination for the management of decline caused by multiple fungi on milkwort (Polygala myrtifolia). Four experiments were performed in a greenhouse within a nursery located in Catania province (southern Italy). The activity of fungicides and biological control agents was evaluated by calculating the plant mortality (%) and recovery frequency (%) of different fungi associated with symptomatic tissue. Comprehensively, boscalid + pyraclostrobin and fosetyl-Al showed the best results in managing disease complex on milkwort. Biological control agents provided, on average, the lowest performances; nevertheless, in most cases, they were able to significantly reduce multiple infections and sometimes when combined with fungicide enhanced the effectiveness. The molecular analysis of 86 isolates obtained from symptomatic tissue allowed to identify the fungi involved in the disease as Calonectriapauciramosa, C. pseudomexicana, Fusariumoxysporum, Neocosmospora solani (syn. F. solani) and binucleate Rhizoctonia AG-R. Calonectriapseudomexicana never reported on milkwort and in Europe was inoculated on P. myrtifolia potted healthy cuttings and produced crown and root rot after 40 days. Our findings represent the first worldwide report about disease complex of milkwort caused by several fungi (Calonectria spp., Fusarium spp. and binucleate Rhizoctonia) and on the effects of integrated control strategies to manage this disease in the nursery.

9.
Microorganisms ; 8(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003323

ABSTRACT

Toxigenic fungi and mycotoxins are very common in food crops, with noticeable differences in their host specificity in terms of pathogenicity and toxin contamination. In addition, such crops may be infected with mixtures of mycotoxigenic fungi, resulting in multi-mycotoxin contamination. Climate represents the key factor in driving the fungal community structure and mycotoxin contamination levels pre- and post-harvest. Thus, there is significant interest in understanding the impact of interacting climate change-related abiotic factors (especially increased temperature, elevated CO2 and extremes in water availability) on the relative risks of mycotoxin contamination and impacts on food safety and security. We have thus examined the available information from the last decade on relative risks of mycotoxin contamination under future climate change scenarios and identified the gaps in knowledge. This has included the available scientific information on the ecology, genomics, distribution of toxigenic fungi and intervention strategies for mycotoxin control worldwide. In addition, some suggestions for prediction and prevention of mycotoxin risks are summarized together with future perspectives and research needs for a better understanding of the impacts of climate change scenarios.

10.
FEMS Microbiol Lett ; 367(5)2020 03 01.
Article in English | MEDLINE | ID: mdl-32149346

ABSTRACT

The European Culture Collections' Organisation presents two new model documents for Material Deposit Agreement (MDA) and Material Transfer Agreement (MTA) designed to enable microbial culture collection leaders to draft appropriate agreement documents for, respectively, deposit and supply of materials from a public collection. These tools provide guidance to collections seeking to draft an MDA and MTA, and are available in open access to be used, modified, and shared. The MDA model consists of a set of core fields typically included in a 'deposit form' to collect relevant information to facilitate assessment of the status of the material under access and benefit sharing (ABS) legislation. It also includes a set of exemplary clauses to be included in 'terms and conditions of use' for culture collection management and third parties. The MTA model addresses key issues including intellectual property rights, quality, safety, security and traceability. Reference is made to other important tools such as best practices and code of conduct related to ABS issues. Besides public collections, the MDA and MTA model documents can also be useful for individual researchers and microbial laboratories that collect or receive microbial cultures, keep a working collection, and wish to share their material with others.


Subject(s)
Biodiversity , Biomedical Research/legislation & jurisprudence , Specimen Handling , Technology Transfer , Europe , Humans
11.
Plants (Basel) ; 9(2)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024312

ABSTRACT

During the spring of 2014, a wide survey was conducted in one of the most important mango (Mangifera indica) cultivating areas located in Minas Gerais State (Brazil) to ascertain the causal agent of severe anthracnose infections and to evaluate disease susceptibility within a world collection of mango germplasm. Overall, 86 cultivars were monitored and 152 fungal isolates recovered from infected samples were identified by morphological characterization, DNA sequencing and phylogenetic analyses. All isolates were identified as Colletotrichum asianum. Under natural disease pressure, it has been possible to ascertain a variable tolerance degree within the germplasm collection. By applying a categorized classification, cultivars were classified as follows: 10 highly sensitive (11.6%), 13 sensitive (15.1%), 18 moderately sensitive (20.9%), 23 moderately tolerant (26.7%), 11 tolerant (12.8%), and 11 highly tolerant (10.4%). The most susceptible cultivars to anthracnose were Ubà, Quinzenga, Amarelinha da Sementeira followed by Aroeira and Correjo, whereas Mallika followed by Ourinho and Lita resulted in the least susceptible cultivars. To the authors' knowledge, this is the first large-scale evaluation of mango susceptibility to C. asianum infections within a wide number of cultivars. Anthracnose is a serious threat to mango production and assessment of cultivar response to disease could be useful in breeding programs.

12.
Front Microbiol ; 11: 581309, 2020.
Article in English | MEDLINE | ID: mdl-33391201

ABSTRACT

The widespread use of Next-Generation Sequencing has opened a new era in the study of biological systems by significantly increasing the catalog of fungal genomes sequences and identifying gene clusters for known secondary metabolites as well as novel cryptic ones. However, most of these clusters still need to be examined in detail to completely understand the pathway steps and the regulation of the biosynthesis of metabolites. Genome sequencing approach led to the identification of the biosynthetic genes cluster of ochratoxin A (OTA) in a number of producing fungal species. Ochratoxin A is a potent pentaketide nephrotoxin produced by Aspergillus and Penicillium species and found as widely contaminant in food, beverages and feed. The increasing availability of several new genome sequences of OTA producer species in JGI Mycocosm and/or GenBank databanks led us to analyze and update the gene cluster structure in 19 Aspergillus and 2 Penicillium OTA producing species, resulting in a well conserved organization of OTA core genes among the species. Furthermore, our comparative genome analyses evidenced the presence of an additional gene, previously undescribed, located between the polyketide and non-ribosomal synthase genes in the cluster of all the species analyzed. The presence of a SnoaL cyclase domain in the sequence of this gene supports its putative role in the polyketide cyclization reaction during the initial steps of the OTA biosynthesis pathway. The phylogenetic analysis showed a clustering of OTA SnoaL domains in accordance with the phylogeny of OTA producing species at species and section levels. The characterization of this new OTA gene, its putative role and its expression evidence in three important representative producing species, are reported here for the first time.

13.
Int J Food Microbiol ; 315: 108420, 2020 Feb 16.
Article in English | MEDLINE | ID: mdl-31731232

ABSTRACT

Ochratoxin A (OTA) is the primary mycotoxin threat in wine and dried vine fruits. Its presence in grape and wine is strongly related to climatic conditions and the expected climate change could represent a risk of increasing fungal colonization and OTA contamination in grapes. In this regard, the interacting effect of i) different conditions of water availability (0.93 and 0.99aw) and ii) different 10 h/14 h dark/light alternating temperature conditions simulating a nowadays (18/31 °C) and climate change scenario (20/37 °C) in high OTA risk areas of Apulia region, were studied. Lag phases prior to growth, mycelial growth rate, the expression of biosynthesis, transcription factors and regulatory genes of OTA cluster and OTA production were analysed in Aspergillus carbonarius ITEM 5010 under the combined effect of different climatic factors. At 18/31 °C and under water stress conditions (0.93 aw) the growth rate was slower than at 0.99 aw; on the contrary, at 20/37 °C a higher growth rate was observed at 0.93 aw. An over-expression of OTA genes and genes belonging to the global regulator Velvet complex was observed at 18/31 °C and 0.99 aw, with the specific OTA pathway transcription factor bZIP showing the highest expression level. The up-regulated transcription profile of the genes positively correlated with OTA production higher at 18/31 °C than at 20/37 °C and 0.99 aw; while no OTA production was detected at 0.93 aw at each of the temperature conditions tested. These findings provide preliminary evidence that the possible increase of the temperature, likely to happen in some areas of the Apulia region, may results in a reduction of both A. carbonarius spoilage and OTA production in grapes.


Subject(s)
Aspergillus/metabolism , Mycotoxins/analysis , Ochratoxins/analysis , Vitis/microbiology , Aspergillus/pathogenicity , Fruit/chemistry , Temperature , Water/metabolism , Wine/microbiology
14.
Microorganisms ; 7(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842279

ABSTRACT

Microorganisms represent most of the biodiversity of living organisms in every ecological habitat. They have profound effects on the functioning of any ecosystem, and therefore on the health of our planet and of human beings. Moreover, microorganisms are the main protagonists in food, medical and biotech industries, and have several environmental applications. Accordingly, the characterization and preservation of microbial biodiversity are essential not only for the maintenance of natural ecosystems but also for research purposes and biotechnological exploitation. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are crucial for the safeguarding and circulation of biological resources, as well as for the progress of life sciences. This review deals with the expertise and services of CCs, in particular concerning preservation and characterization of microbial resources, by pointing to the advanced approaches applied to investigate a huge reservoir of microorganisms. Data sharing and web services as well as the tight interconnection between CCs and the biotechnological industry are highlighted. In addition, guidelines and regulations related to quality management systems (QMSs), biosafety and biosecurity issues are discussed according to the perspectives of CCs and mBRCs.

15.
Toxins (Basel) ; 10(4)2018 04 04.
Article in English | MEDLINE | ID: mdl-29617309

ABSTRACT

Mycotoxins are major food contaminants affecting global food security, especially in low and middle-income countries. The European Union (EU) funded project, MycoKey, focuses on “Integrated and innovative key actions for mycotoxin management in the food and feed chains” and the right to safe food through mycotoxin management strategies and regulation, which are fundamental to minimizing the unequal access to safe and sufficient food worldwide. As part of the MycoKey project, a Mycotoxin Charter (charter.mycokey.eu) was launched to share the need for global harmonization of mycotoxin legislation and policies and to minimize human and animal exposure worldwide, with particular attention to less developed countries that lack effective legislation. This document is in response to a demand that has built through previous European Framework Projects—MycoGlobe and MycoRed—in the previous decade to control and reduce mycotoxin contamination worldwide. All suppliers, participants and beneficiaries of the food supply chain, for example, farmers, consumers, stakeholders, researchers, members of civil society and government and so forth, are invited to sign this charter and to support this initiative.


Subject(s)
Environmental Exposure/prevention & control , Food Contamination/prevention & control , International Cooperation , Mycotoxins , Global Health , Humans
16.
Toxins (Basel) ; 10(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29494529

ABSTRACT

MycoKey, an EU-funded Horizon 2020 project, includes a series of "Roundtable Discussions" to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain.


Subject(s)
Mycotoxins , Animals , Biodiversity , Environmental Monitoring , Humans , Mycotoxins/analysis , Mycotoxins/genetics , Research
17.
Article in English | MEDLINE | ID: mdl-29279049

ABSTRACT

Deoxynivalenol (DON) is an important mycotoxin produced by several species of Fusarium. It occurs often in wheat grain and is frequently associated with significant levels of its modified form DON-3-glucoside (DON-3-Glc). Ozone (O3) is a powerful disinfectant and oxidant, classified as GRAS (Generally Recognised As Safe), that reacts easily with specific compounds including the mycotoxins aflatoxins, ochratoxin A, trichothecenes and zearalenone. It degrades DON in aqueous solution and can be effective for decontamination of grain. This study reports the efficacy of gaseous ozone treatments in reducing DON, DON-3-Glc, bacteria, fungi and yeasts in naturally contaminated durum wheat. A prototype was used to dispense ozone continuously and homogeneously at different concentrations and exposure time, in 2 kg aliquots of durum wheat. The optimal conditions, which do not affect chemical and rheological parameters of durum wheat, semolina and pasta, were identified (55 g O3 h-1 for 6 h). The measured mean reductions of DON and DON-3-Glc in ozonated wheat were 29% and 44%, respectively. Ozonation also produced a significant (p < 0.05) reduction of total count (CFU/g) of bacteria, fungi and yeasts in wheat grains.


Subject(s)
Flour/microbiology , Food Analysis , Food Contamination/analysis , Food Microbiology , Ozone/chemistry , Trichothecenes/analysis , Triticum/chemistry , Triticum/microbiology , Flour/analysis
18.
Front Microbiol ; 8: 1356, 2017.
Article in English | MEDLINE | ID: mdl-28769914

ABSTRACT

Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as Penicillium crustosum (21), P. roqueforti (29), P. paneum (1), P. expansum (6), P. polonicum (2), P. commune (1). A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes) and safety (biogenic amines and secondary metabolites, including mycotoxins) characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities) and safety aspects (no or low production of biogenic amines and regulated mycotoxins), it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.

19.
Toxins (Basel) ; 9(2)2017 02 14.
Article in English | MEDLINE | ID: mdl-28216564

ABSTRACT

Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and chemical data. We propose a list of criteria that need to be met before an unexpected mycotoxin producer is reported. There have only been convincing data on ochratoxin A production for Penicillium verrucosum, P. nordicum, P. thymicola, all from Penicillium series Verrucosa, and from species in three sections of Aspergillus: section Circumdati, section Nigri and section Flavi.


Subject(s)
Penicillium , Vitis , Aspergillus , Food Contamination/analysis , Ochratoxins/analysis , Talaromyces
20.
Methods Mol Biol ; 1542: 33-49, 2017.
Article in English | MEDLINE | ID: mdl-27924530

ABSTRACT

The genus Aspergillus is among the most abundant and widely distributed organism on earth, and at the moment comprises 339 known species. It is one of the most important economically fungal genus and the biotechnological use of Aspergillus species is related to production of soy sauce, of different hydrolytic enzymes (amylases, lipases) and organic acid (citric acid, gluconic acid), as well as biologically active metabolites such as lovastatin. Although they are not considered to be major cause of plant diseases, Aspergillus species are responsible for several disorders in various plants and plant products, especially as opportunistic storage moulds. The notable consequence of their presence is contamination of foods and feeds by mycotoxins, among which the most important are aflatoxins, ochratoxin A, and, at a less extent, fumonisins. Aflatoxins B1, B2, G1, G2 are the most toxic and carcinogenic mycotoxins, due to their extreme hepatocarcinogenicity; ochratoxin A is a potent nephrotoxin, it is also carcinogenic, teratogenic, and immunotoxic in rats and possibly in humans; fumonisins are hepatotoxic and nephrotoxic with potential carcinogenic effects on rat and mice. In this chapter we summarize the main aspects of morphology, ecology, epidemiology, and toxigenicity of Aspergillus foodborne pathogens which belong to sections Flavi, Circumdati, and Nigri, occurring in several agricultural products and responsible of aflatoxin, ochratoxin A, and fumonisins contamination of food and feed.


Subject(s)
Aspergillus/classification , Aspergillus/metabolism , Mycotoxins/metabolism , Aflatoxins/chemistry , Aflatoxins/metabolism , Animals , Biodiversity , Crops, Agricultural/microbiology , Food Contamination/analysis , Food Safety , Humans , Mycotoxins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...