Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Cancer Res Clin Oncol ; 149(2): 913-919, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36241862

ABSTRACT

PURPOSE: An increasing number of international studies demonstrate serious negative effects of the COVID-19 pandemic on the timely diagnosis of cancer and on cancer treatment. Our study aimed to quantitatively and qualitatively evaluate the capacities of German Comprehensive Cancer Centers (CCCs) in different areas of complex oncology care during the first 2 years of the COVID-19 pandemic. METHODS: Prospective panel survey over 23 rounds among 18 CCCs in Germany between March 2020 and June 2022. RESULTS: The COVID-19 pandemic substantially affected the oncological care system in Germany during the first 2 years. Persistent limitations of care in CCCs primarily affected follow-up (- 21%) and psycho-oncologic care (- 12%), but also tumor surgery (- 9%). Substantial limitations were also reported for all other areas of multidisciplinary oncological care. CONCLUSIONS: This study documents the limitations of oncological care during the COVID-19 pandemic and highlights the need to develop strategies to avoid similar limitations in the future.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Prospective Studies , Neoplasms/epidemiology , Neoplasms/therapy
2.
Pharmacol Rev ; 74(3): 600-629, 2022 07.
Article in English | MEDLINE | ID: mdl-35710131

ABSTRACT

Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.


Subject(s)
Alzheimer Disease , Cathepsin B , Alzheimer Disease/metabolism , Animals , Cathepsin B/genetics , Cathepsin B/metabolism , Disease Models, Animal , Gene Knockout Techniques , Humans , Mice , Mice, Knockout , Mice, Transgenic
3.
IEEE Trans Vis Comput Graph ; 28(6): 2314-2325, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35442887

ABSTRACT

We present a novel image-based representation to interactively visualize large and arbitrarily structured volumetric data. This image-based representation is created from a fixed view and models the scalar densities along each viewing ray. Then, any transfer function can be applied and changed interactively to visualize the data. In detail, we transform the density in each pixel to the Fourier basis and store Fourier coefficients of a bounded signal, i.e. bounded trigonometric moments. To keep this image-based representation compact, we adaptively determine the number of moments in each pixel and present a novel coding and quantization strategy. Additionally, we perform spatial and temporal interpolation of our image representation and discuss the visualization of introduced uncertainties. Moreover, we use our representation to add single scattering illumination. Lastly, we achieve accurate results even with changes in the view configuration. We evaluate our approach on two large volume datasets and a time-dependent SPH dataset.

4.
Antioxidants (Basel) ; 10(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804126

ABSTRACT

Cytotoxic T lymphocyte antigen-2 (CTLA-2) alpha has been reported to suppress the activities of cathepsin L (Cath L), which is deeply involved in angiogenesis. Therefore, we assessed whether CTLA-2 alpha plays a role in angiogenesis in ocular tissue. To establish models of corneal inflammation and experimental choroidal neovascularization (CNV), male C57BL/6J mice (n = 5) underwent corneal suture placement or laser-induced CNV, respectively. Mice were then injected with recombinant CTLA-2 alpha (1 µg) into the peritoneal cavity at day 0 and every 2 days after operation. In vitro experiments were performed to assess the inflammatory response by measuring TNF-alpha secretion in peritoneal cavity exudate cells (PECs) or the proliferation of mouse vascular endothelial cells (mVECs). CTLA-2 alpha treatment dramatically suppressed corneal angiogenesis, as well as laser-induced CNV. Moreover, CTLA-2 alpha inhibited the proliferation of mVECs in vitro, while CTLA-2 alpha abolishment was able to rescue proliferation. However, CTLA-2 alpha could not suppress cytokine secretion from inflammatory cells such as PECs. In summary, CTLA-2 alpha was able to suppress angiogenesis by suppressing endothelial cell proliferation. Further studies are needed to investigate its usefulness as a new antiangiogenic treatment for a variety of conditions, including age-related macular degeneration.

5.
Cancers (Basel) ; 13(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800365

ABSTRACT

Molecular precision oncology faces two major challenges: first, to identify relevant and actionable molecular variants in a rapidly changing field and second, to provide access to a broad patient population. Here, we report a four-year experience of the Molecular Tumor Board (MTB) of the Comprehensive Cancer Center Freiburg (Germany) including workflows and process optimizations. This retrospective single-center study includes data on 488 patients enrolled in the MTB from February 2015 through December 2018. Recommendations include individual molecular diagnostics, molecular stratified therapies, assessment of treatment adherence and patient outcomes including overall survival. The majority of MTB patients presented with stage IV oncologic malignancies (90.6%) and underwent an average of 2.1 previous lines of therapy. Individual diagnostic recommendations were given to 487 patients (99.8%). A treatment recommendation was given in 264 of all cases (54.1%) which included a molecularly matched treatment in 212 patients (43.4%). The 264 treatment recommendations were implemented in 76 patients (28.8%). Stable disease was observed in 19 patients (25.0%), 17 had partial response (22.4%) and five showed a complete remission (6.6%). An objective response was achieved in 28.9% of cases with implemented recommendations and for 4.5% of the total population (22 of 488 patients). By optimizing the MTB workflow, case-discussions per session increased significantly while treatment adherence and outcome remained stable over time. Our data demonstrate the feasibility and effectiveness of molecular-guided personalized therapy for cancer patients in a clinical routine setting showing a low but robust and durable disease control rate over time.

6.
ACS Infect Dis ; 7(6): 1457-1468, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33570381

ABSTRACT

Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both Mpro and PLpro proteases. These efforts identified a small number of hits for the Mpro protease and no viable hits for the PLpro protease. Of the Mpro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead Mpro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of Mpro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting Mpro and PLpro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Peptide Hydrolases , Protease Inhibitors
7.
Cell Mol Life Sci ; 78(2): 733-755, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32385587

ABSTRACT

Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor-stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.


Subject(s)
Breast Neoplasms/pathology , Cathepsin B/metabolism , Neoplasm Invasiveness/pathology , Repressor Proteins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cathepsin B/genetics , Cell Proliferation , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Mice , Neoplasm Invasiveness/genetics , Repressor Proteins/genetics , Tumor Cells, Cultured , Tumor Microenvironment , Up-Regulation
8.
IEEE Trans Vis Comput Graph ; 27(2): 1580-1590, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33048705

ABSTRACT

Rapidly growing data sizes of scientific simulations pose significant challenges for interactive visualization and analysis techniques. In this work, we propose a compact probabilistic representation to interactively visualize large scattered datasets. In contrast to previous approaches that represent blocks of volumetric data using probability distributions, we model clusters of arbitrarily structured multivariate data. In detail, we discuss how to efficiently represent and store a high-dimensional distribution for each cluster. We observe that it suffices to consider low-dimensional marginal distributions for two or three data dimensions at a time to employ common visual analysis techniques. Based on this observation, we represent high-dimensional distributions by combinations of low-dimensional Gaussian mixture models. We discuss the application of common interactive visual analysis techniques to this representation. In particular, we investigate several frequency-based views, such as density plots in 1D and 2D, density-based parallel coordinates, and a time histogram. We visualize the uncertainty introduced by the representation, discuss a level-of-detail mechanism, and explicitly visualize outliers. Furthermore, we propose a spatial visualization by splatting anisotropic 3D Gaussians for which we derive a closed-form solution. Lastly, we describe the application of brushing and linking to this clustered representation. Our evaluation on several large, real-world datasets demonstrates the scaling of our approach.

9.
Nat Commun ; 11(1): 5133, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046706

ABSTRACT

Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner. We show that lack of CTSD impaired mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling and induced reversible cellular quiescence. In line, CTSD-deficient tumors started to grow with a two-month delay and quiescent Ctsd-/- tumor cells re-started proliferation upon long-term culture. This was accompanied by rewiring of oncogenic gene expression and signaling pathways, while mTORC1 signaling remained permanently disabled in CTSD-deficient cells. Together, these studies reveal a tumor cell-autonomous effect of CTSD deficiency, and establish a pivotal role of this protease in the cellular response to oncogenic stimuli.


Subject(s)
Breast Neoplasms/metabolism , Cathepsin D/genetics , Epithelium/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Breast Neoplasms/genetics , Cathepsin D/deficiency , Female , Humans , Mammary Glands, Animal/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
10.
IEEE Trans Vis Comput Graph ; 26(1): 780-789, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31425103

ABSTRACT

We propose a data reduction technique for scattered data based on statistical sampling. Our void-and-cluster sampling technique finds a representative subset that is optimally distributed in the spatial domain with respect to the blue noise property. In addition, it can adapt to a given density function, which we use to sample regions of high complexity in the multivariate value domain more densely. Moreover, our sampling technique implicitly defines an ordering on the samples that enables progressive data loading and a continuous level-of-detail representation. We extend our technique to sample time-dependent trajectories, for example pathlines in a time interval, using an efficient and iterative approach. Furthermore, we introduce a local and continuous error measure to quantify how well a set of samples represents the original dataset. We apply this error measure during sampling to guide the number of samples that are taken. Finally, we use this error measure and other quantities to evaluate the quality, performance, and scalability of our algorithm.

11.
Life Sci ; 221: 293-300, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30797017

ABSTRACT

AIM: Cathepsin L (Ctsl) plays a pivotal role in lysosomal and autophagic proteolysis. Previous investigations revealed that partial hepatectomy (PH) decreases biosynthesis of cathepsins in liver, followed by suppression of lysosomal and autophagic proteolysis during liver regeneration. Conversely, it was reported that autophagy-deficiency suppressed liver regeneration. Thus, the purpose of this study is to determine if Ctsl deficiency affects liver regeneration after PH. METHODS: 70% of PH was performed in male Ctsl-deficient mice (Ctsl-/-) and wild-type littermates (Ctsl +/+) after PH. Mice were sacrificed and wet weight of the whole remaining liver was measured. Bromodeoxyuridine (BrdU)-immunostaining of liver sections was performed. Expression of cyclin D1, p62, LC-3, Nrf2, cleaved-Notch1, Hes1 was evaluated by western blot analysis. NQO1 mRNA expression was measured by realtime-PCR. RESULTS: After a 70% of PH, the liver mass was significantly restored within 5 days in Ctsl-/- mice compared to wild-type. Ctsl-deficiency enhanced the increases in both the rate of BrdU-positive cells and cyclin D1 expression after PH more than wild-type mice. On the other hand, Ctsl-deficiency upregulated p62, cleaved-Notch1 and Hes1 expression after PH. Moreover, the protein level of Nrf2 in the nucleus and mRNA expression of NQO1 in the liver after PH was also up-regulated in Ctsl-/- mice. CONCLUSIONS: These findings suggest that accumulation of p62 due to loss of Ctsl plays an important role in liver regeneration through activation of Nrf2-Notch1 signaling. Taken together, Ctsl might be a new therapeutic target on disorder of liver regeneration.


Subject(s)
Cathepsin L/deficiency , Liver Regeneration/physiology , Animals , Autophagy , Cathepsin L/metabolism , Cathepsins , Cells, Cultured , Hepatectomy , Liver , Lysosomes , Male , Mice , Mice, Knockout , NF-E2-Related Factor 2 , Proteolysis , Receptors, Notch , Signal Transduction , Transcription Factor TFIIH , Transcription Factors
12.
Oncogene ; 38(8): 1324-1339, 2019 02.
Article in English | MEDLINE | ID: mdl-30659267

ABSTRACT

Copy number gains, point mutations and epigenetic silencing events are increasingly observed in genes encoding elements of the Ras/Raf/MEK/ERK signaling axis in human breast cancer. The three Raf kinases A-Raf, B-Raf, and Raf-1 have an important role as gatekeepers in ERK pathway activation and are often dysregulated by somatic alterations of their genes or by the aberrant activity of receptor tyrosine kinases (RTKs) and Ras-GTPases. B-Raf represents the most potent Raf isoform and a critical effector downstream of RTKs and RAS proteins. Aberrant RTK signaling is mimicked by the polyoma middle T antigen (PyMT), which activates various oncogenic signaling pathways, incl. the RAS/ERK axis, in a similar manner as RTKs in human breast cancer. Mammary epithelial cell directed expression of PyMT in mice by the MMTV-PyMT transgene induces mammary hyperplasia progressing over adenoma to metastatic breast cancer with an almost complete penetrance. To understand the functional role of B-Raf in this model for luminal type B breast cancer, we crossed MMTV-PyMT mice with animals that either lack B-Raf expression in the mammary gland or express the signaling impaired B-RafAVKA mutant. The AVKA mutation prevents phosphorylation of T599 and S602 in the B-Raf activation loop and thereby activation of the kinase by upstream signals. We demonstrate for the first time that B-Raf expression and activation is important for tumor initiation in vivo as well as for lung metastasis. Isogenic tumor cell lines generated from conditional Braf knock-out or knock-in mice displayed a reduction in EGF-induced ERK pathway activity as well as in proliferation and invasive growth in three-dimensional matrigel cultures. Our results suggest that B-Raf, which has been hardly studied in the context of breast cancer, represents a critical effector of the PyMT oncoprotein and invite for an assessment of its functional role in human breast cancer.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mammary Neoplasms, Animal/genetics , Proto-Oncogene Proteins B-raf/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Mammary Neoplasms, Animal/pathology , Mice , Mice, Knockout , Mutation , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins B-raf/deficiency , Proto-Oncogene Proteins c-raf/genetics
13.
Aging Cell ; 18(1): e12856, 2019 02.
Article in English | MEDLINE | ID: mdl-30575263

ABSTRACT

During normal aging, innate immunity progresses to a chronic state. However, how oxidative stress and chronic neuroinflammation arise during aging remains unclear. In this study, we found that genetic ablation of cathepsin B (CatB) in mice significantly reduced the generation of reactive oxygen species (ROS) and neuroinflammation and improved cognitive impairment during aging. In cultured microglia, pharmacological inhibition of CatB significantly reduced the generation of mitochondria-derived ROS and proinflammatory mediators induced by L-leucyl-L-leucine methyl ester (LLOMe), a lysosome-destabilizing agent. In the CatB-overexpressing microglia after treatment with LLOMe, which mimicked the aged microglia, CatB leaked in the cytosol is responsible for the degradation of the mitochondrial transcription factor A (TFAM), resulting in the increased generation of mitochondria-derived ROS and proinflammatory mediators through impaired mtDNA biosynthesis. Furthermore, intralateral ventricle injection of LLOMe-treated CatB-overexpressing microglia induced cognitive impairment in middle-aged mice. These results suggest that the increase and leakage of CatB in microglia during aging are responsible for the increased generation of mitochondria-derived ROS and proinflammatory mediators, culminating in memory impairment.


Subject(s)
Cathepsin B/metabolism , Cognitive Dysfunction/metabolism , Inflammation/metabolism , Microglia/metabolism , Oxidative Stress , Aging/metabolism , Animals , Cathepsin B/deficiency , Cell Line , Cells, Cultured , Cognitive Dysfunction/complications , Cognitive Dysfunction/physiopathology , Cytosol/drug effects , Cytosol/metabolism , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , Hippocampus/pathology , Inflammation/complications , Memory/drug effects , Mice, Inbred C57BL , Microglia/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Rotenone/pharmacology , Subcellular Fractions/metabolism
14.
Mol Oncol ; 13(3): 535-542, 2019 03.
Article in English | MEDLINE | ID: mdl-30561127

ABSTRACT

The German Cancer Consortium ('Deutsches Konsortium für Translationale Krebsforschung', DKTK) is a long-term cancer consortium, bringing together the German Cancer Research Center (DKFZ), Germany's largest life science research center, and the leading University Medical Center-based Comprehensive Cancer Centers (CCCs) at seven sites across Germany. DKTK was founded in 2012 following international peer review and has positioned itself since then as the leading network for translational cancer research in Germany. DKTK is long term funded by the German Ministry of Research and Education and the federal states of each DKTK partner site. DKTK acts at the interface between basic and clinical cancer research, one major focus being to generate suitable multisite cooperation structures and provide the basis for including higher numbers of patients and facilitate effective collaborative forward and reverse translational cancer research. The consortium addresses areas of high scientific and medical relevance and develops critical infrastructures, for example, for omics technologies, clinical and research big data exchange and analysis, imaging, and clinical grade drug manufacturing. Moreover, DKTK provides a very attractive environment for interdisciplinary and interinstitutional training and career development for clinician and medical scientists.


Subject(s)
Neoplasms/therapy , Translational Research, Biomedical , Germany , Humans , Medical Oncology , Physicians
15.
Article in English | MEDLINE | ID: mdl-32913998

ABSTRACT

PURPOSE: Dramatic advances in our understanding of the molecular pathophysiology of cancer, along with a rapidly expanding portfolio of molecular targeted drugs, have led to a paradigm shift toward personalized, biomarker-driven cancer treatment. Here, we report the 2-year experience of the Comprehensive Cancer Center Freiburg Molecular Tumor Board (MTB), one of the first interdisciplinary molecular tumor conferences established in Europe. The role of the MTB is to recommend personalized therapy for patients with cancer beyond standard-of-care treatment. METHODS: This retrospective case series includes 198 patients discussed from March 2015 through February 2017. The MTB guided individual molecular diagnostics, assessed evidence of actionability of molecular alterations, and provided therapy recommendations, including approved and off-label treatments as well as available matched clinical trials. RESULTS: The majority of patients had metastatic solid tumors (73.7%), mostly progressive (77.3%) after a mean of 2.0 lines of standard treatment. Diagnostic recommendations resulted in 867 molecular diagnostic tests for 172 patients (five per case), including exome analysis in 36 cases (18.2%). With a median turnaround time of 28 days, treatment recommendations were given to 104 patients (52.5%). These included single-agent targeted therapies (42.3%), checkpoint inhibitors (37.5%), and combination therapies (18.3%). Treatment recommendations were implemented in 33 of 104 patients (31.7%), of whom 19 (57.6%) showed stable disease or partial response, including 14 patients (7.1% of the entire population) receiving off-label treatments. CONCLUSION: Personalized extended molecular-guided patient care is effective for a small but clinically meaningful proportion of patients in challenging clinical situations. Limited access to targeted drugs, lack of trials, and submission at late disease stage prevents broader applicability, whereas genome-wide analyses are not a strict requirement for predictive molecular testing.

16.
Pediatr Blood Cancer ; 64(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-28598585

ABSTRACT

Epithelioid hemangioendothelioma (EHE) is a rare, vascular sarcoma. Visceral forms arise in the liver/ lungs. We review the clinical and molecular phenotype of pediatric visceral EHE based on the case of a 9-year-old male child with EHE of the liver/lungs. His tumor expressed the EHE-specific fusion oncogene WWTR1-CAMTA1. Molecular characterization revealed a low somatic mutation rate and activated interferon signaling, angiogenesis regulation, and blood vessel remodeling. After polychemotherapy and resection of lung tumors, residual disease remained stable on oral lenalidomide. Literature review identified another 24 children with EHE of the liver/lungs. Most presented with multifocal, systemic disease. Only those who underwent complete resection achieved complete remission. Four children experienced rapid progression and died. In six children, disease remained stable for years without therapy. Two patients died from progressive EHE 21 and 24 years after first diagnosis. Natural evolution of pediatric visceral EHE is variable, and long-term prognosis remains unclear.


Subject(s)
Hemangioendothelioma, Epithelioid/genetics , Liver Neoplasms/genetics , Lung Neoplasms/genetics , Adolescent , Child , Hemangioendothelioma, Epithelioid/therapy , Humans , Liver Neoplasms/therapy , Lung Neoplasms/therapy , Male
17.
BMC Cancer ; 16(1): 936, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27919243

ABSTRACT

BACKGROUND: Over the past two decades, there has been a rising trend in malignant melanoma incidence worldwide. In 2008, Germany introduced a nationwide skin cancer screening program starting at age 35. The aims of this study were to analyse the distribution of malignant melanoma tumour stages over time, as well as demographic and regional differences in stage distribution and survival of melanoma patients. METHODS: Pooled data from 61 895 malignant melanoma patients diagnosed between 2002 and 2011 and documented in 28 German population-based and hospital-based clinical cancer registries were analysed using descriptive methods, joinpoint regression, logistic regression and relative survival. RESULTS: The number of annually documented cases increased by 53.2% between 2002 (N = 4 779) and 2011 (N = 7 320). There was a statistically significant continuous positive trend in the proportion of stage UICC I cases diagnosed between 2002 and 2011, compared to a negative trend for stage UICC II. No trends were found for stages UICC III and IV respectively. Age (OR 0.97, 95% CI 0.97-0.97), sex (OR 1.18, 95% CI 1.11-1.25), date of diagnosis (OR 1.05, 95% CI 1.04-1.06), 'diagnosis during screening' (OR 3.24, 95% CI 2.50-4.19) and place of residence (OR 1.23, 95% CI 1.16-1.30) had a statistically significant influence on the tumour stage at diagnosis. The overall 5-year relative survival for invasive cases was 83.4% (95% CI 82.8-83.9%). CONCLUSIONS: No distinct changes in the distribution of malignant melanoma tumour stages among those aged 35 and older were seen that could be directly attributed to the introduction of skin cancer screening in 2008.


Subject(s)
Melanoma/mortality , Melanoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Germany/epidemiology , Humans , Incidence , Male , Melanoma/epidemiology , Middle Aged , Neoplasm Staging , Prognosis , Registries , Survival Rate , Time Factors , Young Adult
18.
Sci Rep ; 6: 32491, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27577969

ABSTRACT

The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.

19.
Bioinformatics ; 32(10): 1571-3, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26794316

ABSTRACT

UNLABELLED: : Accurate topology prediction of transmembrane ß-barrels is still an open question. Here, we present BOCTOPUS2, an improved topology prediction method for transmembrane ß-barrels that can also identify the barrel domain, predict the topology and identify the orientation of residues in transmembrane ß-strands. The major novelty of BOCTOPUS2 is the use of the dyad-repeat pattern of lipid and pore facing residues observed in transmembrane ß-barrels. In a cross-validation test on a benchmark set of 42 proteins, BOCTOPUS2 predicts the correct topology in 69% of the proteins, an improvement of more than 10% over the best earlier method (BOCTOPUS) and in addition, it produces significantly fewer erroneous predictions on non-transmembrane ß-barrel proteins. AVAILABILITY AND IMPLEMENTATION: BOCTOPUS2 webserver along with full dataset and source code is available at http://boctopus.bioinfo.se/ CONTACT: : arne@bioinfo.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Membrane Proteins/chemistry , Computational Biology , Models, Molecular , Programming Languages , Protein Structure, Secondary
20.
Biochimie ; 122: 88-98, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26455267

ABSTRACT

Carcinomas establish a molecular cross talk between malignant tumor cells and the activated non-malignant cells of the tumor stroma. This cell-cell communication in tumor-stroma interaction includes soluble, secreted proteins that act in a paracrine or autocrine manner. Proteases are crucial factors in tumor-stroma interaction by degrading or truncating secreted bioactive proteins. The cysteine protease cathepsin B is frequently overexpressed in several cancer types, including breast cancer. Its abundance often correlates with poor prognosis. In the murine polyoma virus middle T oncogene (PyMT) breast cancer model, cathepsin B is equally pro-tumorigenic. In this study, we investigate how cathepsin B shapes the secreted proteome of PyMT breast cancers. We employed a novel strategy to harvest tumor interstitial fluid (IF) in combination with chemical stable isotope tagging for quantitative proteomic comparison of IF stemming from PyMT tumors from wild-type mice, mice lacking cathepsin B, and mice over-expressing human cathepsin B. In three biological replicates, we achieve good proteome coverage (∼1700 proteins), with a large content (>70%) of secreted proteins. This characterizes IF as a robust source for the investigation of cancer secretomes. We also identified a large number of shed ectodomains, thus highlighting the importance of tumor-contextual cell surface proteolysis. Furthermore, IF contained >190 proteases and protease inhibitors, which span the entire range of absolute protein abundances; an observation testifying for an important role of proteolysis in tumor-stroma interaction. The cathepsin B genotype consistently affected proteins including alpha-1B-glycoprotein and major urinary proteins 11 and 8 (MUP8). Our study establishes tumor IF as a rich source for the investigation of secreted proteins in tumor biology and sheds light on complex proteolytic networks in the breast cancer secretome.


Subject(s)
Cathepsin B/metabolism , Extracellular Fluid/metabolism , Mammary Neoplasms, Experimental/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Antigens, Polyomavirus Transforming/genetics , Blotting, Western , Chromatography, Liquid , Mammary Neoplasms, Experimental/genetics , Mice, Knockout , Mice, Transgenic , Peptide Hydrolases/metabolism , Polyomavirus/genetics , Polyomavirus/immunology , Protease Inhibitors/metabolism , Proteins/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...