Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
Neuron ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38834069

Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.

2.
Nat Neurosci ; 27(6): 1187-1198, 2024 Jun.
Article En | MEDLINE | ID: mdl-38689142

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.


Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Nerve Net/physiology , Brain/physiology , Individuality , Brain Mapping , Young Adult , Cerebral Cortex/physiology , Neural Pathways/physiology
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38664864

The Simple View of Reading model suggests that intact language processing and word decoding lead to proficient reading comprehension, with recent studies pointing at executive functions as an important component contributing to reading proficiency. Here, we aimed to determine the underlying mechanism(s) for these changes. Participants include 120 8- to 12-year-old children (n = 55 with dyslexia, n = 65 typical readers) trained on an executive functions-based reading program, including pre/postfunctional MRI and behavioral data collection. Across groups, improved word reading was related to stronger functional connections within executive functions and sensory networks. In children with dyslexia, faster and more accurate word reading was related to stronger functional connections within and between sensory networks. These results suggest greater synchronization of brain systems after the intervention, consistent with the "neural noise" hypothesis in children with dyslexia and support the consideration of including executive functions as part of the Simple View of Reading model.


Dyslexia , Executive Function , Magnetic Resonance Imaging , Reading , Humans , Child , Dyslexia/physiopathology , Dyslexia/psychology , Dyslexia/diagnostic imaging , Executive Function/physiology , Male , Female , Brain/physiopathology , Brain/diagnostic imaging , Brain/physiology
4.
Cereb Cortex ; 34(2)2024 01 31.
Article En | MEDLINE | ID: mdl-38372292

The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.


Brain , Magnetic Resonance Imaging , Adult , Infant, Newborn , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Cerebral Cortex/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
5.
bioRxiv ; 2023 Nov 11.
Article En | MEDLINE | ID: mdl-37986902

The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels. We next derive a set of 283 cortical surface parcels from a sample of n=261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.

6.
Neuroimage ; 279: 120314, 2023 10 01.
Article En | MEDLINE | ID: mdl-37557971

Cortical task control networks, including the cingulo-opercular (CO) network play a key role in decision-making across a variety of functional domains. In particular, the CO network functions in a performance reporting capacity that supports successful task performance, especially in response to errors and ambiguity. In two studies testing the contribution of the CO network to ambiguity processing, we presented a valence bias task in which masked clearly and ambiguously valenced emotional expressions were slowly revealed over several seconds. This slow reveal task design provides a window into the decision-making mechanisms as they unfold over the course of a trial. In the main study, the slow reveal task was administered to 32 young adults in the fMRI environment and BOLD time courses were extracted from regions of interest in three control networks. In a follow-up study, the task was administered to a larger, online sample (n = 81) using a more extended slow reveal design with additional unmasking frames. Positive judgments of surprised faces were uniquely accompanied by slower response times and strong, late activation in the CO network. These results support the initial negativity hypothesis, which posits that the default response to ambiguity is negative and positive judgments are associated with a more effortful controlled process, and additionally suggest that this controlled process is mediated by the CO network. Moreover, ambiguous trials were characterized by a second CO response at the end of the trial, firmly placing CO function late in the decision-making process.


Brain Mapping , Judgment , Young Adult , Humans , Follow-Up Studies , Reaction Time/physiology , Magnetic Resonance Imaging
7.
Nature ; 617(7960): 351-359, 2023 May.
Article En | MEDLINE | ID: mdl-37076628

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Brain Mapping , Cognition , Motor Cortex , Brain Mapping/methods , Hand/physiology , Magnetic Resonance Imaging , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Humans , Infant, Newborn , Infant , Child , Animals , Macaca/anatomy & histology , Macaca/physiology , Foot/physiology , Mouth/physiology , Datasets as Topic
8.
Biol Psychiatry Glob Open Sci ; 3(1): 149-161, 2023 Jan.
Article En | MEDLINE | ID: mdl-36712571

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods: Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results: Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions: We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.

9.
Cereb Cortex ; 33(5): 2200-2214, 2023 02 20.
Article En | MEDLINE | ID: mdl-35595540

The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development, prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262), we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.


Brain Mapping , Magnetic Resonance Imaging , Adult , Infant, Newborn , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Neural Pathways , Brain , Image Processing, Computer-Assisted , Nerve Net
10.
Cereb Cortex ; 33(6): 2788-2803, 2023 03 10.
Article En | MEDLINE | ID: mdl-35750056

The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child's earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window (i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns (n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e. association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role in brain development. This study represents a step towards a normative brain "growth curve" that could be used to identify atypical brain maturation in infancy.


Brain Mapping , Brain , Child , Humans , Infant, Newborn , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Insular Cortex , Neural Pathways/diagnostic imaging
11.
Neuroimage ; 260: 119476, 2022 10 15.
Article En | MEDLINE | ID: mdl-35842100

Recent work identified single time points ("events") of high regional cofluctuation in functional Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation time points. This suggested that events might be a discrete, temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network information differences between time points are driven by sampling variability on a constant, static, noisy signal. Using a combination of real and simulated data, we examined the relationship between cofluctuation and network structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we show that events are not discrete - there is a gradually increasing relationship between network structure and cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points can capture network structure about as well as events, largely because of their temporal spacing. Together, these results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that events arise from a single static, but noisy, FC structure.


Brain Mapping , Brain , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Neural Pathways
13.
Neuroimage ; 254: 119138, 2022 07 01.
Article En | MEDLINE | ID: mdl-35339687

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.


Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Algorithms , Bayes Theorem , Brain/anatomy & histology , Brain/diagnostic imaging , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Reproducibility of Results
14.
Nature ; 603(7902): 654-660, 2022 03.
Article En | MEDLINE | ID: mdl-35296861

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Brain Mapping , Brain , Magnetic Resonance Imaging , Brain Mapping/methods , Cognition , Datasets as Topic , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Phenotype , Reproducibility of Results
15.
Cereb Cortex ; 32(13): 2868-2884, 2022 06 16.
Article En | MEDLINE | ID: mdl-34718460

The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the practice of averaging neuroimaging data across individuals. Here we utilized highly sampled resting-state functional connectivity MRI for individual-specific precision functional mapping (PFM) of corticostriatal connections. We identified ten individual-specific subnetworks linking cortex-predominately frontal cortex-to striatum, most of which converged with nonhuman primate tract-tracing work. These included separable connections between nucleus accumbens core/shell and orbitofrontal/medial frontal gyrus; between anterior striatum and dorsomedial prefrontal cortex; between dorsal caudate and lateral prefrontal cortex; and between middle/posterior putamen and supplementary motor/primary motor cortex. Two subnetworks that did not converge with nonhuman primates were connected to cortical regions associated with human language function. Thus, precision subnetworks identify detailed, individual-specific, neurobiologically plausible corticostriatal connectivity that includes human-specific language networks.


Corpus Striatum , Motor Cortex , Animals , Brain Mapping/methods , Corpus Striatum/diagnostic imaging , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Nucleus Accumbens , Prefrontal Cortex/diagnostic imaging , Putamen
16.
Neuroimage ; 237: 118164, 2021 08 15.
Article En | MEDLINE | ID: mdl-34000397

Many recent developments surrounding the functional network organization of the human brain have focused on data that have been averaged across groups of individuals. While such group-level approaches have shed considerable light on the brain's large-scale distributed systems, they conceal individual differences in network organization, which recent work has demonstrated to be common and widespread. This individual variability produces noise in group analyses, which may average together regions that are part of different functional systems across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for individual-level mapping within studies. Here our goal was to leverage information about individual-level brain organization to probabilistically map common functional systems and identify locations of high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts of data. All networks show "core" (high-probability) regions, but differ from one another in the extent of their higher-variability components. These patterns replicate well across four datasets with different participants and scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together with a tool for querying the network membership probabilities associated with any given cortical location. These quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus to their own fMRI studies, improving inferences about systems and their functional specializations.


Brain Mapping/methods , Cerebral Cortex/physiology , Individuality , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Adult , Cerebral Cortex/diagnostic imaging , Connectome/methods , Datasets as Topic , Female , Humans , Male , Nerve Net/diagnostic imaging , Probability
17.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article En | MEDLINE | ID: mdl-33753484

Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.


Gyrus Cinguli/physiology , Neuronal Plasticity/physiology , Rest/physiology , Adult , Brain Mapping , Executive Function/physiology , Female , Gyrus Cinguli/cytology , Gyrus Cinguli/diagnostic imaging , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiology
18.
Neuroimage ; 229: 117743, 2021 04 01.
Article En | MEDLINE | ID: mdl-33454409

Recent work has demonstrated that individual-specific variations in functional networks (termed "network variants") can be identified in individuals using resting state functional magnetic resonance imaging (fMRI). These network variants exhibit reliability over time, suggesting that they may be trait-like markers of individual differences in brain organization. However, while networks variants are reliable at rest, is is still untested whether they are stable between task and rest states. Here, we use precision data from the Midnight Scan Club (MSC) to demonstrate that (1) task data can be used to identify network variants reliably, (2) these network variants show substantial spatial overlap with those observed in rest, although state-specific effects are present, (3) network variants assign to similar canonical functional networks in task and rest states, and (4) single tasks or a combination of multiple tasks produce similar network variants to rest. Together, these findings further reinforce the trait-like nature of network variants and demonstrate the utility of using task data to define network variants.


Brain/diagnostic imaging , Brain/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Psychomotor Performance/physiology , Rest/physiology , Data Analysis , Databases, Factual/trends , Humans , Magnetic Resonance Imaging/trends
19.
J Am Acad Child Adolesc Psychiatry ; 60(1): 176-185, 2021 01.
Article En | MEDLINE | ID: mdl-32119912

OBJECTIVE: Emotion dysregulation has been suggested to be a potent risk factor for multiple psychiatric conditions. Altered amygdala-prefrontal cortex (PFC) connectivity has been consistently linked to emotion dysregulation. Recent data indicate that amygdala-PFC functional connectivity undergoes a prolonged period of development, with amygdala reactivity during early childhood potentially shaping this unfolding process. Little is known about the relationships between amygdala-PFC functional connectivity, amygdala reactivity, and emotion regulation during early childhood. This information is likely critical for understanding early emotion dysregulation as a transdiagnostic risk factor for psychopathology. The current study examined the relationships between amygdala functional connectivity, amygdala reactivity, and emotion regulation in preschoolers. METHOD: A total of 66 medication-naive 4- to 6-year-olds participated in a study where resting-state functional magnetic resonance imaging (rs-fMRI) and parent-reported child emotion regulation ability data were collected. fMRI data collected during a face viewing task was also available for 24 children. RESULTS: Right amygdala-medial PFC (mPFC) functional connectivity was positively associated with child emotion regulation ability and negatively associated with child negative affect and right amygdala reactivity to facial expressions of emotion. Right amygdala-mPFC functional connectivity also statistically mediated the relationship between heightened right amygdala reactivity and elevated child negative affect. CONCLUSION: Study findings suggest that amygdala-mPFC functional connectivity during early childhood, and its relationships with amygdala reactivity and emotion regulation during this highly sensitive developmental period, may play an important role in early emotional development. These results inform the neurodevelopmental biology of emotion regulation and its potential relationship with risk for psychopathology.


Emotional Regulation , Amygdala/diagnostic imaging , Child , Child, Preschool , Emotions , Facial Expression , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Prefrontal Cortex/diagnostic imaging
20.
Biol Psychiatry ; 89(7): 726-734, 2021 04 01.
Article En | MEDLINE | ID: mdl-33012520

BACKGROUND: Pediatric anxiety disorders involve greater capture of attention by threatening stimuli. However, it is not known if disturbances extend to nonthreatening stimuli, as part of a pervasive disturbance in attention-related brain systems. We hypothesized that pediatric anxiety involves greater capture of attention by salient, nonemotional stimuli, coupled with greater activity in the portion of the inferior frontal gyrus (IFG) specific to the ventral attention network (VAN). METHODS: A sample of children (n = 129, 75 girls, mean 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a task measuring involuntary capture of attention by nonemotional (square boxes) and emotional (angry and neutral faces) stimuli. A subset (n = 61) completed a task variant during functional magnetic resonance imaging. A priori analyses examined activity in functional brain areas within the right IFG, supplemented by a whole-brain, exploratory analysis. RESULTS: Higher clinician-rated anxiety was associated with greater capture of attention by nonemotional, salient stimuli (F1,125 = 4.94, p = .028) and greater activity in the portion of the IFG specific to the VAN (F1,57 = 10.311, p = .002). Whole-brain analyses confirmed that the effect of anxiety during capture of attention was most pronounced in the VAN portion of the IFG, along with additional areas of the VAN and the default mode network. CONCLUSIONS: The pathophysiology of pediatric anxiety appears to involve greater capture of attention to salient stimuli, as well as greater activity in attention-related brain networks. These results provide novel behavioral and brain-based targets for treatment of pediatric anxiety disorders.


Anxiety Disorders , Brain Mapping , Anxiety , Brain/diagnostic imaging , Child , Female , Humans , Magnetic Resonance Imaging , Neuroimaging
...