Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Adv Healthc Mater ; 12(7): e2201697, 2023 03.
Article En | MEDLINE | ID: mdl-36538487

Despite the minimized puncture sizes and high efficiency, microneedle (MN) patches have not been used to inject hemostatic drugs into bleeding wounds because they easily destroy capillaries when a tissue is pierced. In this study, a shelf-stable dissolving MN patch is developed to prevent rebleeding during an emergency treatment. A minimally and site-selectively invasive hemostatic drug delivery system is established by using a peripheral MN (p-MN) patch that does not directly intrude the wound site but enables topical drug absorption in the damaged capillaries. The invasiveness of MNs is histologically examined by using a bleeding liver of a Sprague-Dawley (SD) rat as an extreme wound model in vivo. The skin penetration force is quantified to demonstrate that the administration of the p-MN patch is milder than that of the conventional MN patch. Hemostatic performance is systematically studied by analyzing bleeding weight and time and comparing them with that of conventional hemostasis methods. The superior performance of a p-MN for the heparin-pretreated SD rat model is demonstrated by intravenous injection in vivo.


Hemostatics , Skin , Rats , Animals , Administration, Cutaneous , Rats, Sprague-Dawley , Drug Delivery Systems/methods , Needles , Hemostasis , Hemostatics/pharmacology
2.
ACS Nano ; 13(9): 10776-10786, 2019 Sep 24.
Article En | MEDLINE | ID: mdl-31432663

The battery-supercapacitor hybrid (BSH) device has potential applications in energy storage and can be a remedy for low-power batteries and low-energy supercapacitors. Although several studies have investigated electrode materials (particularly for a battery-type anode material) and design for BSHs, the energy density and power density are insufficient (far from the levels required for practical applications). Herein, a hierarchical vanadium(IV) oxide on reduced graphene oxide (rGO@VO2) heterostructure as an anode and activated carbon on carbon cloth (AC@CC) as a cathode are proposed for fabricating an advanced BSH. The mixed valency of V ions inside the as-prepared VO2 matrix (V3+ and V4+) facilitates redox reactions at a low potential, giving rise to rGO@VO2 as a typical anode with a working potential of 0.01-3 V (vs Li/Li+). The sheet-on-sheet heterostructured rGO@VO2 yields a high specific capacity of 1214 mAh g-1 at 0.1 A g-1 after 120 cycles, with a high rate capability and stability. The rGO@VO2//AC@CC BSH device exhibits a maximum gravimetric energy density of 126.7 Wh kg-1 and a maximum gravimetric power density of ∼10 000 W kg-1 within a working voltage range of 1-4 V. Moreover, it exhibits fast charging times of 5 and 834 s with energy densities of 15.6 and 82 Wh kg -1, respectively.

3.
ACS Nano ; 12(8): 8494-8505, 2018 Aug 28.
Article En | MEDLINE | ID: mdl-30044606

Although aqueous asymmetric supercapacitors are promising technologies because of their high-energy density and enhanced safety, their voltage window is still limited by the narrow stability window of water. Redox reactions at suitable electrodes near the water splitting potential can increase the working potential. Here, we demonstrate a kinetic approach for expanding the voltage window of aqueous asymmetric supercapacitors using in situ activated Mn3O4 and VO2 electrodes. The underlying mechanism indicates a specific potential of ∼1 V vs Ag/AgCl for the oxidation of Mn4+-to-Mn7+ at the positive electrode and ∼ -0.8 V vs Ag/AgCl for the reduction of V3+-to-V2+ at the negative electrode, which limits oxygen and hydrogen evolution reactions, respectively. The as-fabricated aqueous asymmetric supercapacitor exhibited a working voltage of 2.2 V with a high-energy density of 42.7 Wh/kg and a power density of ∼1.1 kW/kg. This mechanism improves the voltage window and energy and power densities.

4.
ChemSusChem ; 8(14): 2284-311, 2015 Jul 20.
Article En | MEDLINE | ID: mdl-26140707

A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed.


Carbon/chemistry , Electric Capacitance , Electric Power Supplies , Lithium/chemistry , Nanotechnology/methods , Electrochemistry , Nanotechnology/instrumentation
5.
ACS Nano ; 9(2): 2018-27, 2015 Feb 24.
Article En | MEDLINE | ID: mdl-25643138

The main obstacles to achieving high electrochemical energy density while retaining high power density are the trade-offs of energy versus power and gravimetric versus volumetric density. Optimizing structural parameters is the key to circumvent these trade-offs. We report here the synthesis of carbon nanotube (CNT)-bridged graphene 3D building blocks via the Coulombic interaction between positively charged CNTs grafted by cationic surfactants and negatively charged graphene oxide sheets, followed by KOH activation. The CNTs were intercalated into the nanoporous graphene layers to build pillared 3D structures, which enhance accessible surface area and allow fast ion diffusion. The resulting graphene/CNT films are free-standing and flexible with a high electrical conductivity of 39,400 S m(-1) and a reasonable mass density of 1.06 g cm(-3). The supercapacitors fabricated using these films exhibit an outstanding electrochemical performance in an ionic liquid electrolyte with a maximum energy density of 117.2 Wh L(-1) or 110.6 Wh kg(-1) at a maximum power density of 424 kW L(-1) or 400 kW kg(-1), which is based on thickness or mass of total active material.

6.
Sci Rep ; 5: 7659, 2015 Jan 07.
Article En | MEDLINE | ID: mdl-25564245

Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure holds the robust surface-to-surface contact between Si and CNSs, which facilitates the fast electron transport. As a consequence, the electrode exhibits high specific capacity and remarkable capacity retention simultaneously: 1560 mA h g(-1) after 100 cycles at a current density of 1 A g(-1) with the capacity retention of 85% and an average decay rate of 0.16% per cycle. The superior battery properties are further confirmed by cyclic voltammetry (CV) and impedance measurement.

7.
ACS Nano ; 7(7): 5940-7, 2013 Jul 23.
Article En | MEDLINE | ID: mdl-23731060

We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 µm and the measured energy density was 0.7 µWh cm(-1) (9.8 µWh cm(-2)) at a power density of 13.7 µW cm(-1) (189.4 µW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.


Electrodes , Electronics/instrumentation , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Electric Capacitance , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanofibers/ultrastructure , Nanotubes, Carbon/ultrastructure , Surface Properties
...