Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Leuk Lymphoma ; : 1-13, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770970

ABSTRACT

VEXAS syndrome is a recently described entity characterized by systemic inflammatory and hematologic manifestations. The disease was first characterized by Beck et al. in 2020 in a study characterizing 25 patients with undiagnosed adult-onset inflammatory syndromes. While the literature regarding VEXAS syndrome has grown exponentially since 2020, there is still much to be understood. This lack of information leads to challenges in both the diagnosis and treatment of patients with VEXAS syndrome. Patients will often have a variety of clinical symptoms that can lead to missed or delayed diagnoses. Additionally, awareness of VEXAS syndrome is still developing among clinicians. In this comprehensive review, we summarize the current literature regarding VEXAS syndrome, and explore clinical updates of this emerging disease state. Our aim of this review is to increase awareness regarding this new disease state and identify research areas to better understand future treatment approaches for patients with VEXAS syndrome.

2.
Nat Commun ; 14(1): 7435, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973913

ABSTRACT

SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.


Subject(s)
Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Transformation, Neoplastic/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Tudor Domain
3.
Diagnostics (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37189465

ABSTRACT

Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple. If a target contains a deletion mutation, then there is a mismatch with the primer or probe, and the real-time PCR will fail to amplify the target. In this study, we designed and evaluated a novel multiplex RT real-time PCR (MPL RT-rPCR) based on the principle of target failure to detect and identify different variants of SARS-CoV-2 directly from the nasopharyngeal swabs collected from COVID-19 suspected cases. The primers and probes were designed based on the specific deletion mutations of current circulating variants. To evaluate the results from the MPL RT-rPCR, this study also designed nine pairs of primers for amplifying and sequencing of nine fragments from the S gene containing mutations of known variants. We demonstrated that (i) our MPL RT-rPCR was able to accurately detect multiple variants that existed in a single sample; (ii) the limit of detection of the MPL RT-rPCR in the detection of the variants ranged from 1 to 10 copies for Omicron BA.2 and BA.5, and from 10 to 100 copies for Delta, Omicron BA.1, recombination of BA.1 and BA.2, and BA.4; (iii) between January and September 2022, Omicron BA.1 emerged and co-existed with the Delta variant during the early period, both of which were rapidly replaced by Omicron BA.2, and this was followed by Omicron BA.5 as the dominant variant toward the later period. Our results showed that SARS-CoV-2 variants rapidly evolved within a short period of time, proving the importance of a robust, economical, and easy-to-access method not just for epidemiological surveillance but also for diagnoses around the world where SARS-CoV-2 variants remain the WHO's highest health concern. Our highly sensitive and specific MPL RT-rPCR is considered suitable for further implementation in many laboratories, especially in developing countries.

4.
Cancer Lett ; 505: 75-86, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33609609

ABSTRACT

In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-ß and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-ß-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-ß1 from tumor suppressor to promoter in EC. TGF-ß1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-ß1-mediated epithelial integrity was abrogated. EC cells developed TGF-ß1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-ß1 activity, CD73 loss increased TGF-ß1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-ß-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-ß-mediated invasion. These data identify CD73 loss as essential for shifting TGF-ß activity in EC.


Subject(s)
5'-Nucleotidase/physiology , Endometrial Neoplasms/pathology , Transforming Growth Factor beta1/physiology , Tumor Suppressor Proteins/physiology , Adenosine/physiology , Adult , Aged , Animals , Cell Differentiation , Cell Line, Tumor , Female , GPI-Linked Proteins/physiology , Humans , Mice , Mice, Inbred C57BL , Middle Aged , Neoplasm Staging
5.
Front Immunol ; 11: 508, 2020.
Article in English | MEDLINE | ID: mdl-32351498

ABSTRACT

CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.


Subject(s)
5'-Nucleotidase/metabolism , Gastrointestinal Neoplasms/therapy , Immunotherapy/methods , Animals , Gastrointestinal Neoplasms/immunology , Humans , Immune Tolerance , Immunomodulation , Receptor, Adenosine A2A/metabolism , Signal Transduction , Tumor Microenvironment
6.
J Immunol ; 200(3): 897-907, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29358413

ABSTRACT

Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.


Subject(s)
Adenosine/metabolism , Cell Hypoxia/physiology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Tight Junctions/pathology , Animals , Colonic Neoplasms/pathology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...