Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Elife ; 122023 Dec 21.
Article En | MEDLINE | ID: mdl-38127424

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1+ macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for efferocytosis pathway genes and display altered efferocytosis signaling via the receptor Axl and its ligand Gas6. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.


Our skin is constantly exposed to potential damage from the outside world, and it is vital that any injuries are repaired quickly and effectively. Diabetes and many other health conditions can hamper wound healing, resulting in chronic wounds that are both painful and at risk of becoming infected, which can lead to serious illness and death of patients. After an injury to the skin, the wound becomes inflamed as immune cells rush to the site of injury to fight off infection and clear the wound of dead cells and debris. Some of these dead cells will have died by a highly controlled process known as apoptosis. These so-called apoptotic cells display signals on their surface that nearby healthy cells recognize. This triggers the healthy cells to eat the apoptotic cells to remove them from the wound. Previous studies have linked changes in cell death and the removal of dead cells to chronic wounds in patients with diabetes, but it remains unclear how removing dead cells from the wound affects healing. Justynski et al. used a genetic technique called single-cell RNA sequencing to study the patterns of gene activity in mouse skin cells shortly after a wound. The experiments found that, as the area around the wound started to become inflamed, the wounded cells produced signals of apoptosis that in turn triggered nearby healthy cells to remove them. Other signals relating to the removal of dead cells were also widespread in the mouse wounds and treating the wounds with drugs that inhibit these signals resulted in multiple defects in the healing process. Further experiments used the same approach to study samples of tissue taken from foot wounds in human patients with or without diabetes. This revealed that several genes involved in the removal of dead cells were more highly expressed in the wounds of diabetic patients than in the wounds of other individuals. These findings indicate that for wounds to heal properly it is crucial for the body to detect and clear apoptotic cells from the wound site. Further studies building on this work may help to explain why some diabetic patients suffer from chronic wounds and help to develop more effective treatments for them.


Apoptosis , Efferocytosis , Humans , Animals , Mice , Apoptosis/genetics , Fibroblasts , Inflammation , Inhibition, Psychological
2.
EMBO J ; 42(19): e113880, 2023 10 04.
Article En | MEDLINE | ID: mdl-37602956

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.


Chromatin , Histones , Animals , Mice , Chromatin/genetics , Histones/genetics , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Cell Differentiation/genetics , Demethylation , Fibroblasts/metabolism
3.
bioRxiv ; 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36945417

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.

4.
bioRxiv ; 2023 Feb 18.
Article En | MEDLINE | ID: mdl-36824808

Wound repair requires the coordination of multiple cell types including immune cells and tissue resident cells to coordinate healing and return of tissue function. Diabetic foot ulceration is a type of chronic wound that impacts over 4 million patients in the US and over 7 million worldwide (Edmonds et al., 2021). Yet, the cellular and molecular mechanisms that go awry in these wounds are not fully understood. Here, by profiling chronic foot ulcers from non-diabetic (NDFUs) and diabetic (DFUs) patients using single-cell RNA sequencing, we find that DFUs display transcription changes that implicate reduced keratinocyte differentiation, altered fibroblast function and lineages, and defects in macrophage metabolism, inflammation, and ECM production compared to NDFUs. Furthermore, analysis of cellular interactions reveals major alterations in several signaling pathways that are altered in DFUs. These data provide a view of the mechanisms by which diabetes alters healing of foot ulcers and may provide therapeutic avenues for DFU treatments.

5.
bioRxiv ; 2023 Jan 17.
Article En | MEDLINE | ID: mdl-36711968

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1 + macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for apoptotic genes and display increased and altered efferocytosis signaling via the receptor Axl. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.

6.
J Invest Dermatol ; 142(7): 1812-1823.e3, 2022 07.
Article En | MEDLINE | ID: mdl-34922949

One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multiomics analysis by processing neonatal murine skin for single-cell Assay for Transposase-Accessible Chromatin sequencing and single-cell RNA sequencing separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages on the basis of transcriptome profiling, as previously reported. However, single-cell Assay for Transposase-Accessible Chromatin sequencing analysis of neonatal fibroblast lineage markers, such as Dpp4/Cd26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggest that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary fibroblasts, reticular fibroblasts, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our single-cell Assay for Transposase-Accessible Chromatin sequencing analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates is regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multiomics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.


Fibroblasts , Single-Cell Analysis , Animals , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/metabolism , Mice , Skin , Transposases/metabolism
7.
J Invest Dermatol ; 141(7): 1627-1629, 2021 07.
Article En | MEDLINE | ID: mdl-34167721

Single-cell RNA sequencing (scRNA-seq) provides an unprecedented ability to investigate cellular heterogeneity in entire organs and tissues, including human skin. Ascensión et al. (2020) combined and reanalyzed human skin scRNA-seq datasets to uncover new insights into fibroblast heterogeneity. This work demonstrates that new discoveries can be made from published data on the basis of principles of these three Rs: Reuse, Refine, and Resource.


Gene Expression Profiling , Single-Cell Analysis , Base Sequence , Humans , Sequence Analysis, RNA , Exome Sequencing
8.
Exp Dermatol ; 30(1): 92-101, 2021 01.
Article En | MEDLINE | ID: mdl-33237598

Wound-induced hair follicle neogenesis (WIHN) has been an important model to study hair follicle regeneration during wound repair. However, the cellular and molecular components of the dermis that make large wounds more regenerative are not fully understood. Here, we compare and contrast recently published scRNA-seq data of small scarring wounds to wounds that regenerate in hope to elucidate the role of fibroblasts lineages in WIHN. Our analysis revealed an over-representation of the newly identified upper wound fibroblasts in regenerative wound conditions, which express the retinoic acid binding protein Crabp1. This regenerative cell type shares a similar gene signature to the murine papillary fibroblast lineage, which are necessary to support hair follicle morphogenesis and homeostasis. RNA velocity analysis comparing scarring and regenerating wounds revealed the divergent trajectories towards upper and lower wound fibroblasts and that the upper populations were closely associated with the specialized dermal papilla. We also provide analyses and explanation reconciling the inconsistency between the histological lineage tracing and the scRNA-seq data from recent reports investigating large wounds. Finally, we performed a computational test to map the spatial location of upper wound fibroblasts in large wounds which revealed that upper peripheral fibroblasts might harbour equivalent regenerative competence as those in the centre. Overall, our scRNA-seq reanalysis combining multiple samples suggests that upper wound fibroblasts are required for hair follicle regeneration and that papillary fibroblasts may migrate from the wound periphery to the centre during wound re-epithelialization. Moreover, data from this publication are made available on our searchable web resource: https://skinregeneration.org/.


Cicatrix/genetics , Fibroblasts/physiology , Transcriptome , Wound Healing/genetics , Wounds and Injuries/genetics , Wounds and Injuries/pathology , Animals , Cell Lineage , Databases, Genetic , Dermis/pathology , Fibroblasts/pathology , Hair Follicle/physiopathology , Kruppel-Like Transcription Factors/genetics , Luminescent Proteins , Mice , Re-Epithelialization/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Skin/injuries , Red Fluorescent Protein
9.
Elife ; 92020 09 29.
Article En | MEDLINE | ID: mdl-32990218

Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.


Fibroblasts/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Skin/metabolism , Wound Healing/physiology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Skin/cytology
10.
Anal Chim Acta ; 809: 155-61, 2014 Jan 27.
Article En | MEDLINE | ID: mdl-24418147

We have investigated the effect of buffer solution composition and pH during the preparation, washing and re-loading phases within a family of acrylamide-based molecularly imprinted polymers (MIPs) for bovine haemoglobin (BHb), equine myoglobin (EMb) and bovine catalyse (BCat). We investigated water, phosphate buffer saline (PBS), tris(hydroxymethyl)aminomethane (Tris) buffer and succinate buffer. Throughout the study MIP selectivity was highest for acrylamide, followed by N-hydroxymethylacrylamide, and then N-iso-propylacrylamide MIPs. The selectivity of the MIPs when compared with the NIPs decreased depending on the buffer conditions and pH in the order of Tris>PBS>succinate. The Tris buffer provided optimum imprinting conditions at 50 mM and pH 7.4, and MIP selectivities for the imprinting of BHb in polyacrylamide increased from an initial 8:1 to a 128:1 ratio. It was noted that the buffer conditions for the re-loading stage was important for determining MIP selectivity and the buffer conditions for the preparation stage was found to be less critical. We demonstrated that once MIPs are conditioned using Tris or PBS buffers (pH7.4) protein reloading in water should be avoided as negative effects on the MIP's imprinting capability results in low selectivities of 0.8:1. Furthermore, acidifying the pH of the buffer solution below pH 5.9 also has a negative impact on MIP selectivity especially for proteins with high isoelectric points. These buffer conditioning effects have also been successfully demonstrated in terms of MIP efficiency in real biological samples, namely plasma and serum.

11.
Biomacromolecules ; 13(12): 3959-65, 2012 Dec 10.
Article En | MEDLINE | ID: mdl-23106501

We have characterized the imprinting capability of a family of acrylamide polymer-based molecularly imprinted polymers (MIPs) for bovine hemoglobin (BHb) and trypsin (Tryp) using spectrophotometric and quartz crystal microbalance (QCM) sensor techniques. Bulk gel characterization on acrylamide (AA), N-hydroxymethylacrylamide (NHMA), and N-isopropylacrylamide (NiPAM) gave varied selectivities when compared with nonimprinted polymers. We have also harnessed the ability of the MIPs to facilitate protein crystallization as a means of evaluating their selectivity for cognate and noncognate proteins. Crystallization trials indicated improved crystal formation in the order NiPAM

Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Hydrogels/chemistry , Molecular Imprinting , Polymers/chemistry , Acrylamides/chemistry , Acrylamides/metabolism , Animals , Cattle , Crystallization/methods , Hemoglobins/metabolism , Protein Conformation , Quartz Crystal Microbalance Techniques/methods , Trypsin/metabolism
12.
Proc Natl Acad Sci U S A ; 108(27): 11081-6, 2011 Jul 05.
Article En | MEDLINE | ID: mdl-21690356

We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as "smart materials," are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8-10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates.


Molecular Imprinting/methods , Polymers/chemistry , Proteins/isolation & purification , Animals , Crystallization , Humans , Hydrogels , Microscopy, Atomic Force , Proteins/chemistry
13.
Article Vi | WPRIM | ID: wpr-3739

51 patients with acute hepatitis B were studied at Infectious and Tropical Diseases Department, Hue Central Hospital with criteria of clinical features, transaminase 5 times higher than normal upper limit and positive HbsAg at hospitalized time. 62% of them admitted hospital from 1 to 14 days after developed disease, reminder admitted hospital later than 15thday. Symptoms: 45,1% patients no fever; 88,2% oligouria and dark urine; 58,8% without swell of liver; 9,8% bleeding; 9,8% faint. Test results: there were 11% of patients with prothrombin <60%, 82,4% with bilirubin <340µg/l. 62,7% with De Ritis<1, 35,3% with HbeAg(+) and 33,3% with HbsAg (+) remained for 6 months. HbsAg positive remained for 6 months is associated with the group of patients admitted hospital later than 15thday (X2=5.1, P<0,05), the group with no fever (X2=10.1, P<0,05), the group with oligouria and dark urine (X2=13.6, P<0,05) and the group with jaundice (X2=5.1, P<0,05). The associations also existed between bilirubin level <340µg/l and the remained HbsAg (+) for 6 months and HbsAg (+) at the patients’ admission and the remained HbsAg (+) for 6 months (X2=5.5, P<0,05 and X2=31.3, P<0,05, respectively). The latter is strongly positive association.


Hepatitis B , Hepatitis B Surface Antigens
...