Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Oecologia ; 197(3): 577-588, 2021 Nov.
Article En | MEDLINE | ID: mdl-34546496

The composition of plant-pollinator interactions-i.e., who interacts with whom in diverse communities-is highly dynamic, and we have a very limited understanding of how interaction identities change in response to perturbations in nature. One prediction from niche and diet theory is that resource niches will broaden to compensate for resource reductions driven by perturbations, yet this has not been empirically tested in plant-pollinator systems in response to real-world perturbations in the field. Here, we use a long-term dataset of floral visitation to Ipomopsis aggregata, a montane perennial herb, to test whether the breadth of its floral visitation niche (i.e., flower visitor richness) changed in response to naturally occurring drought perturbations. Fewer floral resources are available in drought years, which could drive pollinators to expand their foraging niches, thereby expanding plants' floral visitation niches. We compared two drought years to three non-drought years to analyze changes in niche breadth and community composition of floral visitors to I. aggregata, predicting broadened niche breadth and distinct visitor community composition in drought years compared to non-drought years. We found statistically significant increases in niche breadth in drought years as compared to non-drought conditions, but no statistically distinguishable changes in community composition of flower visitors. Our findings suggest that plants' floral visitation niches may exhibit considerable plasticity in response to disturbance. This may have widespread consequences for community-level stability as well as functional consequences if increased niche overlap affects pollination services.


Droughts , Pollination , Flowers , Plants
2.
Ecol Evol ; 10(7): 3189-3199, 2020 Apr.
Article En | MEDLINE | ID: mdl-32273980

Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.

...