Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 109975, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38827398

ABSTRACT

Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.

2.
Commun Biol ; 6(1): 539, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202439

ABSTRACT

Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.


Subject(s)
Lactation , Milk, Human , Infant , Female , Humans , Child , Milk, Human/chemistry , Milk, Human/metabolism , Immunoglobulins/metabolism , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
3.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36146555

ABSTRACT

Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.

4.
Environ Health Perspect ; 129(11): 117001, 2021 11.
Article in English | MEDLINE | ID: mdl-34747641

ABSTRACT

BACKGROUND: Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES: The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS: Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS: TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION: We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.


Subject(s)
Dioxins , Placentation , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dioxins/toxicity , Endothelial Cells/metabolism , Female , Placenta/metabolism , Polychlorinated Dibenzodioxins/toxicity , Pregnancy , Rats , Receptors, Aryl Hydrocarbon/metabolism , Trophoblasts/drug effects
5.
Reprod Sci ; 28(2): 462-469, 2021 02.
Article in English | MEDLINE | ID: mdl-33048315

ABSTRACT

Catechol-O-methyltransferase (COMT) has been shown to be a key regulator of pregnancy outcomes in mouse, and its deficiency is causative in the development of a preeclampsia-like disease process. Preeclampsia is a human pregnancy disorder associated with failure of intrauterine trophoblast cell invasion and trophoblast-guided uterine spiral artery remodeling, which are not well-developed in mouse. The purpose of this study was to investigate COMT in rat, a species with deep intrauterine trophoblast invasion. To accomplish this task, we used clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing of the rat Comt gene. A Comt null rat model was established and its fertility characterized. Comt null male and female rats were viable and fertile. COMT deficiency did not significantly impact pregnancy outcomes, including litter size, placental and fetal weights, Mendelian and sex ratios, or pregnancy-dependent adaptations to hypoxia. Collectively, our findings indicate that pregnancy-associated phenotypic outcomes of COMT deficiency are not equivalent in mouse and rat. In rat, COMT is not required for a successful pregnancy outcome.


Subject(s)
Catechol O-Methyltransferase/metabolism , Fertility , Placenta/enzymology , Pregnancy Outcome , Animals , Catechol O-Methyltransferase/genetics , Disease Models, Animal , Female , Fetal Development , Fetal Weight , Gene Editing , Genotype , Hypoxia/epidemiology , Hypoxia/genetics , Hypoxia/physiopathology , Litter Size , Male , Phenotype , Placentation , Pregnancy , Rats, Sprague-Dawley , Rats, Transgenic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...