Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Andrology ; 12(4): 918-931, 2024 May.
Article in English | MEDLINE | ID: mdl-37608516

ABSTRACT

BACKGROUND: Phospholipase C zeta (PLCZ1) is considered the major sperm-borne oocyte activation factor. Cryopreserved stallion spermatozoa are commonly used for intracytoplasmic sperm injection (ICSI). However, plasma membrane damage and protein modifications caused by cryopreservation could impair sperm structure and function, leading to a reduction of PLCZ1 and oocyte activation after ICSI. OBJECTIVES: We compared membrane integrity and PLCZ1 abundance in populations for fresh, frozen, and refrozen stallion spermatozoa, either thawed and refrozen at room or low temperature; and examined the effect of relative PLCZ1 content on cleavage after ICSI. MATERIALS AND METHODS: Western blotting, ELISA, and immunofluorescence were conducted in stallion spermatozoa, freezing extenders, and detergent-extracted sperm fractions to detect and quantify PLCZ1. Retrospectively, PLCZ1 content and cleavage rate were analyzed. Fresh, frozen, and refrozen at room and low temperatures spermatozoa were evaluated for acrosomal and plasma membrane integrity and PLCZ1 content using flow cytometry. RESULTS: Western blotting, ELISA, and immunofluorescence revealed significant reduction of PLCZ1 in spermatozoa after cryopreservation and confirmed PLCZ1 detection in extenders. After detergent extraction, a PLCZ1-nonextractable fraction remained in the postacrosomal region of spermatozoa. Plasma membrane integrity was significantly reduced after freezing. Acrosomal and plasma membrane integrity were similar between frozen and refrozen samples at low temperature, but both were significantly higher than samples refrozen at room temperature. Acrosomal and plasma membrane integrity significantly correlated to PLCZ1 content. Percentages of PLCZ1-labeled spermatozoa and PLCZ1 content were reduced after freezing but not after refreezing. Relative content and localization of PLCZ1 were associated with cleavage rates after ICSI. DISCUSSION AND CONCLUSION: Sperm PLCZ1 content associates with cleavage rates after ICSI. Cryopreservation is detrimental to sperm plasma membrane integrity and PLCZ1 retention. However, refreezing did not result in additional PLCZ1 loss. Refreezing stallion spermatozoa at a low temperature resulted in better survival but did not improve PLCZ1 retention.


Subject(s)
Detergents , Semen Preservation , Male , Animals , Horses , Detergents/pharmacology , Detergents/metabolism , Retrospective Studies , Semen , Sperm Motility , Spermatozoa/metabolism , Cryopreservation/methods , Oocytes , Type C Phospholipases/metabolism , Cell Membrane , Semen Preservation/methods
2.
Front Endocrinol (Lausanne) ; 14: 1132743, 2023.
Article in English | MEDLINE | ID: mdl-37124751

ABSTRACT

Background: In women, placental corticotropin releasing hormone (CRH) can be detected in maternal blood throughout pregnancy and is important in the regulation of the timing of parturition. However, its role in other mammalian species is unclear. In fact, very little is known about the presence and localization of CRH in placentas other than human. In this study we report for the first time the presence of CRH in feline placenta and maternal serum. Methods: Presence of CRH mRNA and protein was assessed using RT-PCR and Western blot, respectively, in at term domestic cat placentas opportunistically obtained at a local animal shelter and spay clinic. In addition, CRH localization within the placenta was demonstrated via immunohistochemistry. Finally, presence of CRH in maternal blood from early (¾21 days) and mid (25-35 days) stages of pregnancy was investigated by ELISA. Results: CRH mRNA and protein were detected in feline placentas, and localized to larger decidual cells and fetal trophoblast cells, including the binucleate cells. CRH was detectable in maternal blood collected from early-stage pregnancies, and amounts significantly increased in mid-gestation samples. Conclusion: This is the first report on the presence and localization of CRH in the feline placenta, and its increase in maternal serum during the first half of pregnancy. These data lay the foundation for future studies to determine if CRH can be used as potential novel marker for early pregnancy diagnosis, determination, and monitoring in felids, and could greatly increase efficiency and success in zoo breeding programs utilizing artificial reproductive technologies for endangered feline species.


Subject(s)
Corticotropin-Releasing Hormone , Placenta , Animals , Cats , Placenta/chemistry , Corticotropin-Releasing Hormone/analysis , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/genetics , Female , Pregnancy/blood , Biomarkers/blood , Enzyme-Linked Immunosorbent Assay , RNA, Messenger/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...