Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Stem Cell Rev Rep ; 20(4): 967-979, 2024 May.
Article in English | MEDLINE | ID: mdl-38372877

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating , Neoplastic Stem Cells , Neovascularization, Pathologic , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Neovascularization, Pathologic/pathology , Neoplasms/pathology , Neoplasms/metabolism , Animals , Phenotype , Cell Proliferation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology
2.
Cells ; 12(21)2023 10 31.
Article in English | MEDLINE | ID: mdl-37947637

ABSTRACT

It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism
3.
Pharmaceutics ; 15(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004503

ABSTRACT

The Caco-2 cell line derived from human colon carcinoma is commonly used to assess the permeability of compounds in in vitro conditions. Due to the significant increase in permeability studies using the Caco-2 cell line in recent years, the need to standardize this biological model seems necessary. The pharmaceutical requirements define only the acceptance criteria for the validation of the Caco-2 cell line and do not specify the protocol for its implementation. Therefore, the aim of this study is to review the conditions for permeability studies across the Caco-2 monolayer reported in the available literature concerning validation guidelines. We summarized the main aspects affecting the validation process of the Caco-2 cell line, including the culture conditions, cytotoxicity, cell differentiation process, and monolayer transport conditions, and the main conclusions may be useful in developing individual methods for preparing the cell line for validation purposes and further permeability research.

4.
Cells ; 12(18)2023 09 16.
Article in English | MEDLINE | ID: mdl-37759515

ABSTRACT

Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.


Subject(s)
Nucleic Acids , Regenerative Medicine , Humans , Cell Differentiation , Embryo Implantation , Neovascularization, Pathologic
5.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765139

ABSTRACT

The primary purpose of this work was to design and obtain a series of curcuminoid chalcone-NSAID hybrid derivatives. The ester-type hybrid compounds with ibuprofen (i), ketoprofen (ii), and naproxen (iii) were obtained in two ways, using the Claisen-Schmidt reaction and the Steglich esterification reaction. The designed molecules were successfully synthesised, and FT-IR, MS, and NMR spectroscopy confirmed their structures. Moreover, the cytotoxic effect of the sonodynamic therapy and the anti-inflammatory, antioxidant, and anticholinergic properties of some curcuminoid chalcones and curcuminoid chalcones hybrids were evaluated. The curcuminoid chalcone derivatives showed promising neuroprotective activity as sonosensitisers for sonodynamic therapy in the studied cell lines. Additionally, the stability of the ester-type hybrid compounds with promising activity was determined. The RP-HPLC method was used to observe the degradation of the tested compounds. Studies have shown that structural isomers of ester-type hybrid compounds (3ai, 3bi) are characterised by a similar susceptibility to degradation factors, i.e., they are extremely unstable in alkaline environments, very unstable in acidic environments, unstable in neutral environments, practically stable in oxidising environments, and photolabile in solutions and in the solid phase. These compounds maintain adequate stability in environment at pH 1.2 and 6.8, which may make them good candidates for developing formulations for oral administration.

6.
Life Sci ; 332: 122126, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37769803

ABSTRACT

Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.

7.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629120

ABSTRACT

Wharton's jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine.


Subject(s)
Gastrointestinal Hormones , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived , Wharton Jelly , Humans , Chondrocytes , Adipocytes , Cell Differentiation/genetics , Osteoblasts , Immunologic Factors
8.
Endocrine ; 82(3): 681-694, 2023 12.
Article in English | MEDLINE | ID: mdl-37572199

ABSTRACT

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Subject(s)
Progesterone , Stilbenes , Female , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Progesterone/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Liposomes/metabolism , Liposomes/pharmacology , Stilbenes/pharmacology , Stilbenes/metabolism , Estradiol/pharmacology , Follicle Stimulating Hormone/metabolism , Granulosa Cells/metabolism , Multienzyme Complexes/metabolism , Multienzyme Complexes/pharmacology
9.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511632

ABSTRACT

Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.


Subject(s)
Granulosa Cells , Ovarian Follicle , Female , Swine , Animals , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Ovary/metabolism , Cell Proliferation/genetics , Mammals
10.
Pharmaceutics ; 15(7)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37514194

ABSTRACT

Sonodynamic therapy (SDT) is a non-invasive therapeutic modality in cancer treatment that combines low-intensity ultrasound (US) and sonosensitizers. Tumor cells are destroyed through the synergistic effects of ultrasound and a chemical sonosensitizer. This study focused on the synthesis and in vitro evaluation of the sonodynamic effect of natural curcumin, triterpene oleanolic acid, and their semi-synthetic derivatives on tongue cancer SCC-25 and hypopharyngeal FaDu cell lines. The combination of the tested compounds with sonication showed a synergistic increase in cytotoxicity. In the group of oleanolic acid derivatives, oleanoyl hydrogen succinate (6) showed the strongest cytotoxic effect both in the SCC-25 and FaDu cell lines. Comparing curcumin (4) and its pyrazole derivative (5), curcumin showed a better cytotoxic effect on SCC-25 cells, while curcumin pyrazole was more potent on FaDu cells. The highest sonotherapeutic activity, compared to its individual components, was demonstrated by a structural linker mode hybrid containing both curcumin pyrazole-oleanoyl hydrogen succinate units within one complex molecule (7). This study can be beneficial in the context of new perspectives in the search for effective sonosensitizers among derivatives of natural organic compounds.

11.
Plants (Basel) ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447047

ABSTRACT

(1) The cytotoxicity and antioxidant activity of different fractions as well as the pro-apoptotic activity of saponin fractions from Eryngium planum L. in SKOV-3 was investigated. (2) In screening studies, the cytotoxicity of six fractions on SKOV-3 was examined by LDH and SRB assays. The most active fractions-triterpenoid saponins-were selected for further investigation. To determine the mechanism of saponin fractions' cytotoxicity, their ability to induce apoptosis was examined via Annexin V assay. The effect of the saponin fractions on caspase 3 activity was measured using a Caspase 3 Assay Kit. The expression of 84 apoptosis-related genes was investigated in cancer cells exposed to saponin fractions from the roots. The radical scavenging capacity of different fractions was determined via DPPH assay. (3) The pronounced cytotoxic effects in SKOV-3 were demonstrated by saponin fractions from the leaves and roots. Those saponin fractions were chosen for further investigation. The treatment of cancer cell lines with saponins obtained from the roots provoked a significant increase in apoptotic cells. In the SKOV-3 cells, saponins caused upregulation of pro-apoptotic genes and a decrease in anti-apoptotic genes. The activation of caspase 3 was correlated with an increased DFFA expression level in the treated SKOV-3 cells. The most active fractions were phenolic acids from the shoots and roots. (4) To the best of our knowledge, the current study is the first to demonstrate that the barrigenol-type triterpenoid saponin fraction from the roots of E. planum inhibits SKOV-3 cell proliferation and induces apoptosis, which may be regulated by the expression of genes mostly specific to a mitochondria-related pathway.

12.
Cells ; 12(3)2023 01 18.
Article in English | MEDLINE | ID: mdl-36766698

ABSTRACT

Exosomes are biological nanoscale spherical lipid bilayer vesicles, 40-160 nm in diameter, produced by most mammalian cells in both physiological and pathological conditions. Exosomes are formed via the endosomal sorting complex required for transport (ESCRT). The primary function of exosomes is mediating cell-to-cell communication. In terms of cancer, exosomes play important roles as mediators of intercellular communication, leading to tumor progression. Moreover, they can serve as biomarkers for cancer detection and progression. Therefore, their utilization in cancer therapies has been suggested, either as drug delivery carriers or as a diagnostic tool. However, exosomes were also reported to be involved in cancer drug resistance via transferring information of drug resistance to sensitive cells. It is important to consider the current knowledge regarding the role of exosomes in cancer, drug resistance, cancer therapies, and their clinical application in cancer therapies.


Subject(s)
Exosomes , Neoplasms , Animals , Humans , Exosomes/physiology , Neoplasms/pathology , Drug Carriers/therapeutic use , Drug Delivery Systems , Carcinogenesis , Mammals
13.
Drug Deliv ; 29(1): 2459-2468, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35892260

ABSTRACT

3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214) belongs to methoxystilbenes family and is an active metabolite of 3,4,5,4'-tetramethoxystilbene (DMU-212). In several of our previous studies, the anti-apoptotic activity of DMU-214 was significantly higher than that of the parent compound, especially in ovarian cancer cells. Due to increased lipophilicity and limited solubility, methoxystilbenes require a solubilization strategy enabling DMU-214 administration to the aqueous environment. In this study, DMU-214-loaded liposomes were developed for the first time, and its antitumor activity was tested in the ovarian cancer model.First, several liposomal formulations of DMU-214 were obtained by the thin lipid film hydration method followed by extrusion and then characterized. The diameter of the resulting vesicles was in the range of 118.0-155.5 nm, and samples presented monodisperse size distribution. The release of DMU-214 from the studied liposomes was governed by the contribution of two mechanisms, Fickian diffusion and liposome relaxation.Subsequently, in vitro activity of DMU-214 in the form of a free compound or liposome-bound was studied, including commercial cell line SK-OV-3 and patient-derived ovarian cancer cells in monolayer and spheroid cell culture models. DMU-214 liposomal formulations were found to be more potent (had lower IC50 values) than the free DMU-214 both in the monolayer and, more significantly, in both examined spheroid models. The above results, with particular emphasis on the patient-derived ovarian cancer model, indicate the importance of further development of liposomal DMU-214 as a potential anticancer formulation for ovarian cancer treatment.


Subject(s)
Liposomes , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Resveratrol , Stilbenes
14.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683135

ABSTRACT

The potential anticancer activity of different silver nanoformulations is increasingly recognized. In the present work, we use the model of 4T1 tumor in BALB/ccmdb immunocompetent mice to analyze the impact of citrate- and PEG-coated silver nanoparticles (AgNPs) on the development and metastatic potential of breast cancer. One group of mice was intragastrically administered with 1 mg/kg body weight (b.w.) of AgNPs daily from day 1 to day 14 after cancer cells implantation (total dose 14 mg/kg b.w.). The second group was intravenously administered twice with 1 or 5 mg/kg b.w. of AgNPs. A tendency for lowering tumor volume on day 21 (mean volumes 491.31, 428.88, and 386.83 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) and day 26 (mean volumes 903.20, 764.27, and 672.62 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) has been observed in mice treated intragastrically, but the effect did not reach the level of statistical significance. Interestingly, in mice treated intragastrically with citrate-coated AgNPs, the number of lung metastases was significantly lower, as compared to control mice (the mean number of metastases 18.89, 14.90, and 8.03 for control, AgNPs-PEG, and AgNPs-citrate, respectively). No effect of AgNPs treatment on the number of lung metastases was observed after intravenous administration (the mean number of metastases 12.44, 9.86, 12.88, 11.05, and 10.5 for control, AgNPs-PEG 1 mg/kg, AgNPs-PEG 5 mg/kg, AgNPs-citrate 1 mg/kg, and AgNPs-citrate 5 mg/kg, respectively). Surprisingly, inhibition of metastasis was not accompanied by changes in the expression of genes associated with epithelial-mesenchymal transition. Instead, changes in the expression of inflammation-related genes were observed. The presented results support the antitumor activity of AgNPs in vivo, but the effect was limited to the inhibition of metastasis. Moreover, our results clearly point to the importance of AgNPs coating and route of administration for its anticancer activity. Finally, our study supports the previous findings that antitumor AgNPs activity may depend on the activation of the immune system and not on the direct action of AgNPs on cancer cells.

15.
Molecules ; 27(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408631

ABSTRACT

Perindopril arginine (PA) as an angiotensin-converting enzyme (ACE) inhibitor is widely used in cardiovascular diseases, especially in systemic hypertension and heart failure. Although the pharmacokinetics of PA are well documented, there is no available detailed data on its permeation in in vitro conditions. The present study aimed to assess the transport of PA across both biological membranes and artificial biomimetic ones. For the determination of PA transport, the Caco-2 cell line was selected as a reliable in vitro model of gastrointestinal biological barriers. Additionally, a novel 96-well plate with phospholipid membrane PermeaPad was used to evaluate the transport of PA by passive diffusion. We confirmed that PA is relatively poorly permeable across the Caco-2 monolayer. The permeability results obtained from the non-cell-based model demonstrated higher transport of PA as compared to that of Caco-2. Thus, PA transport across the biological membranes might be suggested to be regulated by the membrane transporters.


Subject(s)
Perindopril , Phospholipids , Arginine , Biological Transport , Biomimetics , Caco-2 Cells , Cell Membrane Permeability , Humans , Intestinal Absorption , Permeability
16.
Genes (Basel) ; 13(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35205287

ABSTRACT

Modern science is becoming increasingly committed to environmentally friendly solutions, mitigating the impact of the developing human civilisation on the environment. One of the leading fields aimed at sustainable agriculture is in vitro meat production. Cellular agriculture aims to provide a source of animal-free meat products, which would decrease worldwide nutritional dependency on animal husbandry, thereby reducing the significant impact of this industry on Earth's climate. However, while some studies successfully produced lab-based meat on a small scale, scalability of this approach requires significant optimisation of the methodology in order to ensure its viability on an industrial scale. One of the methodological promises of in vitro meat production is the application of cell suspension-based bioreactors. Hence, this study focused on a complex transcriptomic comparison of adherent undifferentiated, differentiated and suspension-cultured myosatellite cells, aiming to determine the effects of different culture methods on their transcriptome. Modern next-generation sequencing (RNAseq) was used to determine the levels of transcripts in the cultures' cell samples. Then, differential expression and pathway analyses were performed using bionformatical methods. The significantly regulated pathways included: EIF2, mTOR, GP6, integrin and HIFα signalling. Differential regulation of gene expression, as well as significant enrichment and modulation of pathway activity, suggest that suspension culture potentially promotes the ex vivo-associated loss of physiological characteristics and gain of plasticity. Therefore, it seems that suspension cultures, often considered the desired method for in vitro meat production, require further investigation to fully elucidate their effect on myosatellite cells and, therefore, possibly enable their easier scalability to ensure suitability for industrial application.


Subject(s)
Cell Culture Techniques , Myoblasts , Animals , Cell Culture Techniques/methods , Cell Differentiation/genetics , Gene Ontology , Signal Transduction/genetics
17.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160897

ABSTRACT

Improvement of the bioavailability of poorly soluble medicinal substances is currently one of the major challenges for pharmaceutical industry. Enhancing the dissolution rate of those drugs using novel methods allows to increase their bioavailability. In recent years, silica-based mesoporous materials have been proposed as drug delivery systems that augment the dissolution rate. The aim of this study was to analyse the influence of phenylbutazone adsorption on SBA-15 on its dissolution rate. Moreover, we examined the cytotoxicity of the analyzed silica. The material was characterized by SEM, TEM, DSC, 1H-NMR, XRD, and FT-IR. The phenylbutazone did not adsorb on unmodified SBA-15, while the adsorption on APTES-modified SBA-15 resulted in 50.43 mg/g of loaded phenylbutazone. Phenylbutazone adsorbed on the APTES-modified SBA-15 was then released in the hydrochloric acidic medium (pH 1.2) and phosphate buffer (pH 7.4) and compared to the dissolution rate of the crystalline phenylbutazone. The release profiles of the amorphous form of adsorbed phenylbutazone are constant in different pH, while the dissolution rate of the crystalline phenylbutazone depends on the pH. The cytotoxicity assays were performed using the Caco-2 cell line. Our results indicate that the analyzed material ensured phenylbutazone adsorption in an amorphous state inside the mesopores and increased its dissolution rate in various pH levels. Furthermore, the cytotoxicity assay proved safety of studied material. Our study demonstrated that APTES-modified SBA-15 can serve as a non-toxic drug carrier that improves the bioavailability of phenylbutazone.

18.
Eur J Pharm Sci ; 171: 106133, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35066153

ABSTRACT

An increasing proportion of new medicinal substances are poorly soluble in water. Adsorption on mesoporous silicas increases their bioavailability when administered orally. Loading method determines adsorption either on the surface in crystalline state or inside the mesopores in amorphus form. The aim of this study was to compare two methods (adsorption equilibrium and solvent evaporation) of lornoxicam adsorption on SBA-15 and APTES-modified SBA-15 in terms of drug adsorption site. Additionally, we investigated the drug release profiles at different pH and cytotoxicity of the analysed mesoporous materials. The materials were characterized by a number of physicochemical techniques including X-ray diffraction, nitrogen adsorption/desorption techniques, differential scanning calorimetry, thermogravimetric analysis, scanning and transmission electron microscopy, infrared spectroscopy and 1H NMR. Lornoxicam was loaded on the studied materials and released in the media (HCl pH 1.2, phosphate buffers pH 6.8 and 7.4). The cytotoxicity assays of APTES-modified SBA-15 were performed on CaCo-2 human colon cancer cell line. We proved that adsorption equilibrium method is a more advantageous method of loading. It ensures drug adsorption in an amorphous state inside the mesopores. The solvent evaporation method, despite a greater amount of loaded drug, results in drug adsorption in a crystalline state on the silica surface. In drug release studies a greater amount of lornoxicam is released from modified materials compared to crystalline lornoxicam. Cytotoxicity study proved the safety of APTES-modified silica. We concluded that APTES-modified SBA-15 is applicable as an effective and non-toxic carrier for the poorly soluble drug lornoxicam. The adsorption equilibrium method should be the preferred loading method. It enables the adsorption of sparingly soluble substances inside the mesoproes and enhances bioavailability of oral pharmaceutical forms.


Subject(s)
Drug Carriers , Silicon Dioxide , Adsorption , Caco-2 Cells , Drug Carriers/chemistry , Humans , Piroxicam/analogs & derivatives , Porosity , Silicon Dioxide/chemistry , Solubility , X-Ray Diffraction
19.
Cells ; 12(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36611967

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.


Subject(s)
Endocrine Disruptors , Polycystic Ovary Syndrome , Female , Humans , Endocrine Disruptors/toxicity , Granulosa Cells/pathology
20.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34943786

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Mesenchymal Stem Cells/cytology , Regenerative Medicine , Amniotic Fluid/cytology , Cell Self Renewal/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/transplantation , Female , Humans , Mesenchymal Stem Cell Transplantation , Placenta/cytology , Placenta/transplantation , Pregnancy , Umbilical Cord/cytology , Umbilical Cord/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...