Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Appl ; 34(7): e3030, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39252434

ABSTRACT

Increasingly frequent severe drought events are pushing Mediterranean forests to unprecedented responses. Lack of management leads to dense forests that are highly susceptible to drought stress, potentially resulting in extensive dieback and increased vulnerability to other disturbances. Forest treatments like thinning and slash burning reduce competition for resources and have the potential to enhance tree growth and vigor and minimize tree vulnerability to drought. Here, we used tree rings to study the growth and physiological response of black pine (Pinus nigra) to drought in northeastern Spain under different treatments, including two thinning intensities (light and heavy, with 10% and 40% basal area reduction, respectively) followed by two understory treatments (clearing alone and in combination with slash burning), resulting in a research design of four treatments plus an untreated control with three replicates. Specifically, we studied basal area increment (BAI), resilience indices, and intrinsic water use efficiency (iWUE) using carbon and oxygen isotope composition (δ13C and δ18O in tree-ring cellulose) before and after treatments. Our results showed that BAI and resistance to drought increased in the heavy-thin (burned and unburned) and light-thin burned units. Resilience increased in the burned units regardless of the thinning intensity, while recovery was not affected by treatment. Slash burning additionally increased BAI in the light-thin and resistance and resilience in the heavy-thin units compared with clearing alone. The stable isotope analysis revealed a minor effect of treatments on δ13C and δ18O. No change in iWUE among treatments was presumably linked to a proportional increase in both net CO2 assimilation and stomatal conductance, which particularly increased in the heavy-thin (burned and unburned) and light-thin burned units, indicating that these trees were the least affected by drought. This study shows that management approaches aimed at reducing wildfire hazard can also increase the vigor of dominant trees under drought stress. By reducing competition both from the overstory and the understory, thinning followed by clearing alone or in combination with slash burning promotes tree growth and vigor and increases its resistance and resilience to drought.


Subject(s)
Droughts , Forestry , Pinus , Pinus/physiology , Spain , Fires , Forests
2.
Sci Total Environ ; 618: 1539-1546, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29111258

ABSTRACT

Fuel treatments can mitigate present and future impacts of climate change by reducing fire intensity and severity. In recent years, Pinus nigra forests in the Mediterranean basin have been dramatically affected by the new risk of highly intense and extreme fires and its distribution area has been reduced. New tools are necessary for assessing the management of these forests so they can adapt to the challenges to come. Our main goal was to evaluate the effects of different fuel treatments on Mediterranean Pinus nigra forests. We assessed the forest response, in terms of forest structure and fire behavior, to different intensities of low thinning treatments followed by different slash prescriptions (resulting in: light thinning and lop and scatter; light thinning and burn; heavy thinning and lop and scatter; heavy thinning and burn; and, untreated control). Treatments that used fire to decrease the resulting slash were the most effective for reducing active crown fires decreasing the rate of spread and flame length more than 89%. Low thinning had an effect on torching potential, but there was no difference between intensities of thinning. Only an outcoming crown fire could spread actively if it was sustained by a high-enough constant wind speed and enough surface fuel load. Overall, treatments reduce fire intensity and treated areas have a more homogenous fire behavior response than untreated areas. This provides opportunities to extinguish the fire and reduce the probability of trees dying from the fire. It would be helpful to include ecological principles and fire behavior criteria in silvicultural treatment guidelines in order to perform more efficient management techniques in the future.


Subject(s)
Fires/statistics & numerical data , Forestry/methods , Forests , Climate Change , Conservation of Natural Resources , Ecosystem , Pinus , Spain , Trees , Wind
SELECTION OF CITATIONS
SEARCH DETAIL