ABSTRACT
The trans-A2B-corrole series was prepared starting with 5-(pentafluorophenyl)dipyrromethene, which was then reacted with respective aryl-substituted aldehyde by Gryko synthesis. It was further characterized by HRMS and electrochemical methods. In addition, we investigated experimental photophysical properties (absorption, emission by steady-state and time-resolved fluorescence) in several solvents and TDDFT calculations, aggregation, photostability and reactive oxygen species generation (ROS), which are relevant when selecting photosensitizers used in photodynamic therapy and many other photo-applications. In addition, we also evaluated the biomolecule-binding properties with CT-DNA and HSA by spectroscopy, viscometry and molecular docking calculations assays.
Subject(s)
Photochemotherapy , Porphyrins , Molecular Docking Simulation , Porphyrins/chemistry , PhotobiologyABSTRACT
First-principles calculations within DFT have been performed to investigate the use of a recently synthesized form of silicene, the dumbbell (DB) silicene as an anode material for Li-ion batteries (LiBs). The energetically most stable geometries for Li adsorption on DB silicene were investigated, and the energy barriers for Li-ion diffusion among the possible stable adsorption sites were calculated. We found that DB silicene can be lithiated up to a ratio of 1.05 Li per Si atom, resulting in a high storage capacity of 1002 mA h g-1 and an average open-circuit potential of 0.38 V, which makes DB silicene suitable for applications as an anode in LiBs. The energy barrier for Li-ion diffusion was calculated to be as low as 0.19 eV, suggesting that the Li ions can easily diffuse on the entire DB silicene surface, decreasing the time for the charge/discharge process of the LiBs. Our detailed investigations show that the most stable form of two-dimensional silicon has characteristic features suitable for application in high-performance LiBs.
ABSTRACT
This work presents the synthesis, characterization of copper(II) complexes (C1-C6) and the potential of these compounds to mimic the catalytic activity of the enzyme superoxide dismutase (SOD). The copper(II)complexes were obtained by reaction between the aldol condensation between substituted aromatic hydrazides and aromatic aldehydes (salicylic aldehyde and pyridoxal hydrochloride), forming two new ligands (L1 to L6), resulting in new dimeric dicopper (II) complexes (C1 and C2), new three monomeric CuII derivatives (C3, C4 and C6) and a polymeric complex (C5). The CuII complexes were fully characterized by X-ray diffraction, spectroscopic and electrochemical analysis. Subsequently, CuII derivatives were evaluated for their antioxidant activities, using the NBT (Nitro blue tetrazolium chloride) photoreduction methodology. After evaluating the antioxidant activity in vitro, it was observed that the best inhibition rates of the superoxide ion are associated to the C4 and C5 complexes. Computational analysis via molecular docking and quantum chemical calculation (Fukui map) offered a molecular level explanation on the biological activity of CuII complexes. Additionally, cytotoxicity of C1-C6 was tested in the first time in vivo in nematodes Caenorhabditis elegans, corroborating with the results identified for C4 and C5.
Subject(s)
Caenorhabditis elegans/drug effects , Coordination Complexes/pharmacology , Copper/chemistry , Pyridoxal/chemistry , Superoxide Dismutase/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Coordination Complexes/chemistry , Ligands , Molecular Docking Simulation , Superoxides/metabolismABSTRACT
Excessive production of reactive species in living cells usually has pathological effects. Consequently, the synthesis of compounds which can mimic the activity of antioxidant enzymes has inspired great interest. In this study, a variety of diselenoamino acid derivatives from phenylalanine and valine were tested to determine whether they could be functional mimics of glutathione peroxidase (GPx) and substrates for liver thioredoxin reductase (TrxR). Diselenides C and D showed the best GPx mimicking properties when compared with A and B. We suppose that the catalytic activity of diselenide GPx mimics depends on the steric effects, which can be influenced by the number of carbon atoms between the selenium atom and the amino acid residue and/or by the amino acid lateral residue. Compounds C and D stimulated NADPH oxidation in the presence of partially purified hepatic mammalian TrxR, indicating that they are substrates for TrxR. Our study indicates a possible dissociation between the two pathways for peroxide degradation (i.e., via a substrate for TrxR or via mimicry of GPx) for compounds tested in this study, except for PhSeSePh, and the antioxidant activity of diselenoamino acids can also be attributed to their capacity to mimic GPx and to be a substrate for mammalian TrxR.