Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 9(11): 4178-4190, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33982040

ABSTRACT

The development and use of nanosystems is an emerging strategy for the diagnosis and treatment of a broad number of diseases, such as Alzheimer's disease (AD). Here, we developed a neurotheranostic nanosystem based on gold nanorods (GNRs) that works as a therapeutic peptide delivery system and can be detected in vivo for microcomputed tomography (micro-CT), being a diagnostic tool. GNRs functionalized with the peptides Ang2 (a shuttle to the Central Nervous System) and D1 (that binds to the Aß peptide, also inhibiting its aggregation) allowed detecting differences in vivo between wild type and AD mice (APPswe/PSEN1dE9) 15 minutes after a single dose by micro-CT. Moreover, after a recurrent treatment for one month with GNRs-D1/Ang2, we observed a diminution of amyloid load and inflammatory markers in the brain. Thus, this new designed nanosystem exhibits promising properties for neurotheranostics of AD.


Subject(s)
Alzheimer Disease , Nanotubes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Gold , Mice , Mice, Transgenic , X-Ray Microtomography
2.
Int J Nanomedicine ; 13: 6839-6854, 2018.
Article in English | MEDLINE | ID: mdl-30498346

ABSTRACT

BACKGROUND: Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated with systemic and neurological diseases. Despite the important role of poly (ADP-ribose) polymerase 1 (PARP-1) in the regulation of gene expression and DNA repair, overactivation of PARP-1 in asphyxia-exposed animals worsens the ATP-dependent energetic crisis. Inhibition of PARP-1 offers a therapeutic strategy for diminishing the effects of perinatal asphyxia. METHODS: We designed a nanosystem that incorporates a specific siRNA for PARP-1 knockdown. The siRNA was complexed with gold nanorods (AuNR) conjugated to the peptide CLPFFD for brain targeting. RESULTS: The siRNA was efficiently delivered into PC12 cells, resulting in gene silencing. The complex was administered intraperitoneally in vivo to asphyxia-exposed rat pups, and the ability of the AuNR-CLPFFD/siRNA complex to reach the brain was demonstrated. CONCLUSION: The combination of a nanosystem for delivery and a specific siRNA for gene silencing resulted in effective inhibition of PARP-1 in vivo.


Subject(s)
Asphyxia/therapy , Gene Knockdown Techniques , Gold/administration & dosage , Nanotubes/chemistry , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering/administration & dosage , Animals , Animals, Newborn , Asphyxia/pathology , Brain/metabolism , Cell Survival , Endocytosis , Female , Gold/chemistry , Hydrodynamics , Nanotubes/ultrastructure , PC12 Cells , Peptides/chemistry , Pregnancy , Rats , Spectrophotometry, Ultraviolet , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL