Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652550

ABSTRACT

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain-like receptor (NLR) family CARD domain-containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.


Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Interferon Type I , Signal Transduction , Female , Humans , Male , Calcium-Binding Proteins/genetics , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon Type I/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology
2.
Nat Commun ; 13(1): 3102, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35660742

ABSTRACT

Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named "dopamine hub synapses". At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity.


Subject(s)
Dopamine , Synapses , Animals , Corpus Striatum/physiology , Dopamine/metabolism , Mice , Reward , Synapses/metabolism , Synaptic Transmission/physiology
3.
J Am Soc Nephrol ; 33(1): 121-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34725108

ABSTRACT

BACKGROUND: The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained. METHODS: The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and in vitro mTORi effects on T-cell phenotype and functions were analyzed. RESULTS: In KTRs who were R+ and treated with MPA, both αß and γδ T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection. In patients treated with mTORis (n=27), the proportion of PD-1+ and CD85j+ αß and γδ T cells decreased, when compared with patients treated with MPA (n=44), as did the frequency and severity of CMV infections. mTORi treatment also led to higher proportions of late-differentiated and cytotoxic γδ T cells and IFNγ-producing and cytotoxic αß T cells. In vitro, mTORis increased proliferation, viability, and CMV-induced IFNγ production of T cells and decreased PD-1 and CD85j expression in T cells, which shifted the T cells to a more efficient EOMESlow Hobithigh profile. In γδ T cells, the mTORi effect was related to increased TCR signaling. CONCLUSION: Severe CMV replication is associated with a dysfunctional T-cell profile and mTORis improve T-cell fitness along with better control of CMV. A dysfunctional T-cell phenotype could serve as a new biomarker to predict post-transplantation infection and to stratify patients who should benefit from mTORi treatment. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Proportion of CMV Seropositive Kidney Transplant Recipients Who Will Develop a CMV Infection When Treated With an Immunosuppressive Regimen Including Everolimus and Reduced Dose of Cyclosporine Versus an Immunosuppressive Regimen With Mycophenolic Acid and Standard Dose of Cyclosporine A (EVERCMV), NCT02328963.


Subject(s)
Cytomegalovirus Infections/prevention & control , Kidney Transplantation/adverse effects , MTOR Inhibitors/therapeutic use , T-Lymphocyte Subsets/drug effects , Aged , Anti-Bacterial Agents/therapeutic use , Antigens, CD/metabolism , Cell Culture Techniques , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/pathology , Female , Humans , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Male , Middle Aged , Mycophenolic Acid/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets/metabolism
4.
Sci Immunol ; 6(61)2021 07 30.
Article in English | MEDLINE | ID: mdl-34330813

ABSTRACT

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Subject(s)
AMP-Activated Protein Kinases/immunology , Antigens/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms/immunology , Receptor, EphA2/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , AMP-Activated Protein Kinases/genetics , Animals , Antibodies, Monoclonal/immunology , Cell Line , Humans , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/genetics
5.
Mol Cancer Ther ; 20(1): 121-131, 2021 01.
Article in English | MEDLINE | ID: mdl-33277440

ABSTRACT

TIGIT is an immune checkpoint inhibitor expressed by effector CD4+ and CD8+ T cells, NK cells, and regulatory T cells (Tregs). Inhibition of TIGIT-ligand binding using antagonistic anti-TIGIT mAbs has shown in vitro potential to restore T-cell function and therapeutic efficacy in murine tumor models when combined with an anti-PD(L)-1 antibody. In the current work, we demonstrate broader TIGIT expression than previously reported in healthy donors and patients with cancer with expression on γδ T cells, particularly in CMV-seropositive donors, and on tumor cells from hematologic malignancies. Quantification of TIGIT density revealed tumor-infiltrating Tregs as the population expressing the highest receptor density. Consequently, the therapeutic potential of anti-TIGIT mAbs might be wider than the previously described anti-PD(L)-1-like restoration of αß T-cell function. CD155 also mediated inhibition of γδ T cells, an immune population not previously described to be sensitive to TIGIT inhibition, which could be fully prevented via use of an antagonistic anti-TIGIT mAb (EOS-448). In PBMCs from patients with cancer, as well as in tumor-infiltrating lymphocytes from mice, the higher TIGIT expression in Tregs correlated with strong antibody-dependent killing and preferential depletion of this highly immunosuppressive population. Accordingly, the ADCC/ADCP-enabling format of the anti-TIGIT mAb had superior antitumor activity, which was dependent upon Fcγ receptor engagement. In addition, the anti-TIGIT mAb was able to induce direct killing of TIGIT-expressing tumor cells both in human patient material and in animal models, providing strong rationale for therapeutic intervention in hematologic malignancies. These findings reveal multiple therapeutic opportunities for anti-TIGIT mAbs in cancer therapeutics.


Subject(s)
Antibodies, Neoplasm/immunology , Antibodies, Neoplasm/pharmacology , Cytotoxicity, Immunologic , Receptors, Immunologic/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antigens, CD/metabolism , Cytotoxicity, Immunologic/drug effects , Female , Healthy Volunteers , Humans , Immunoglobulin G/metabolism , Lymphocyte Depletion , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes, Regulatory/drug effects
6.
J Infect Dis ; 223(4): 655-666, 2021 02 24.
Article in English | MEDLINE | ID: mdl-32622351

ABSTRACT

Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor-dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Biomarkers , Cell Line , Cytomegalovirus Infections/physiopathology , Female , Fibroblasts/immunology , Fibroblasts/virology , Humans , Immunocompromised Host , Interferon-gamma/biosynthesis , Kidney Transplantation , Lymphocyte Activation , Male , Middle Aged , Severity of Illness Index
7.
Immunol Rev ; 298(1): 264-288, 2020 11.
Article in English | MEDLINE | ID: mdl-33091199

ABSTRACT

Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αß and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Cytomegalovirus Infections/therapy , Humans , Immunocompromised Host , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets
8.
Hepatol Commun ; 4(6): 809-824, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32490318

ABSTRACT

Until recently, 10% of hepatocellular adenomas (HCAs) remained unclassified (UHCA). Among the UHCAs, the sonic hedgehog HCA (shHCA) was defined by focal deletions that fuse the promoter of Inhibin beta E chain with GLI1. Prostaglandin D2 synthase was proposed as immunomarker. In parallel, our previous work using proteomic analysis showed that most UHCAs constitute a homogeneous subtype associated with overexpression of argininosuccinate synthase (ASS1). To clarify the use of ASS1 in the HCA classification and avoid misinterpretations of the immunohistochemical staining, the aims of this work were to study (1) the link between shHCA and ASS1 overexpression and (2) the clinical relevance of ASS1 overexpression for diagnosis. Molecular, proteomic, and immunohistochemical analyses were performed in UHCA cases of the Bordeaux series. The clinico-pathological features, including ASS1 immunohistochemical labeling, were analyzed on a large international series of 67 cases. ASS1 overexpression and the shHCA subgroup were superimposed in 15 cases studied by molecular analysis, establishing ASS1 overexpression as a hallmark of shHCA. Moreover, the ASS1 immunomarker was better than prostaglandin D2 synthase and only found positive in 7 of 22 shHCAs. Of the 67 UHCA cases, 58 (85.3%) overexpressed ASS1, four cases were ASS1 negative, and in five cases ASS1 was noncontributory. Proteomic analysis performed in the case of doubtful interpretation of ASS1 overexpression, especially on biopsies, can be a support to interpret such cases. ASS1 overexpression is a specific hallmark of shHCA known to be at high risk of bleeding. Therefore, ASS1 is an additional tool for HCA classification and clinical diagnosis.

9.
Immunity ; 52(3): 487-498.e6, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32155411

ABSTRACT

Vγ9Vδ2 T cells respond in a TCR-dependent fashion to both microbial and host-derived pyrophosphate compounds (phosphoantigens, or P-Ag). Butyrophilin-3A1 (BTN3A1), a protein structurally related to the B7 family of costimulatory molecules, is necessary but insufficient for this process. We performed radiation hybrid screens to uncover direct TCR ligands and cofactors that potentiate BTN3A1's P-Ag sensing function. These experiments identified butyrophilin-2A1 (BTN2A1) as essential to Vγ9Vδ2 T cell recognition. BTN2A1 synergised with BTN3A1 in sensitizing P-Ag-exposed cells for Vγ9Vδ2 TCR-mediated responses. Surface plasmon resonance experiments established Vγ9Vδ2 TCRs used germline-encoded Vγ9 regions to directly bind the BTN2A1 CFG-IgV domain surface. Notably, somatically recombined CDR3 loops implicated in P-Ag recognition were uninvolved. Immunoprecipitations demonstrated close cell-surface BTN2A1-BTN3A1 association independent of P-Ag stimulation. Thus, BTN2A1 is a BTN3A1-linked co-factor critical to Vγ9Vδ2 TCR recognition. Furthermore, these results suggest a composite-ligand model of P-Ag sensing wherein the Vγ9Vδ2 TCR directly interacts with both BTN2A1 and an additional ligand recognized in a CDR3-dependent manner.


Subject(s)
Antigens/immunology , Butyrophilins/immunology , Germ Cells/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/chemistry , Butyrophilins/metabolism , CHO Cells , Cricetinae , Cricetulus , Germ Cells/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism
10.
Mol Ther Oncolytics ; 16: 250-261, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32140563

ABSTRACT

Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-ß (IFN-ß) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.

11.
Cancer Res ; 79(19): 5008-5021, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31358531

ABSTRACT

Proprotein convertases (PC) activate precursor proteins that play crucial roles in various cancers. In this study, we investigated whether PC enzyme activity is required for expression of the checkpoint protein programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTL) in colon cancer. Although altered expression of the PC secretory pathway was observed in human colon cancers, only furin showed highly diffuse expression throughout the tumors. Inhibition of PCs in T cells using the general protein-based inhibitor α1-PDX or the pharmacologic inhibitor Decanoyl-Arg-Val-Lys-Arg-chloromethylketone repressed PD-1 and exhausted CTLs via induction of T-cell proliferation and apoptosis inhibition, which improved CTL efficacy against microsatellite instable and microsatellite stable colon cancer cells. In vivo, inhibition of PCs enhanced CTL infiltration in colorectal tumors and increased tumor clearance in syngeneic mice compared with immunodeficient mice. Inhibition of PCs repressed PD-1 expression by blocking proteolytic maturation of the Notch precursor, inhibiting calcium/NFAT and NF-κB signaling, and enhancing ERK activation. These findings define a key role for PCs in regulating PD-1 expression and suggest targeting PCs as an adjunct approach to colorectal tumor immunotherapy. SIGNIFICANCE: Protein convertase enzymatic activity is required for PD-1 expression on T cells, and inhibition of protein convertase improves T-cell targeting of microsatellite instable and stable colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/5008/F1.large.jpg.


Subject(s)
Colorectal Neoplasms/immunology , Programmed Cell Death 1 Receptor/biosynthesis , Proprotein Convertases/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment/immunology , Animals , Colorectal Neoplasms/metabolism , Heterografts , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , T-Lymphocytes, Cytotoxic/immunology
12.
Proc Natl Acad Sci U S A ; 114(12): 3163-3168, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28270598

ABSTRACT

Human γδ T cells comprise a first line of defense through T-cell receptor (TCR) recognition of stressed cells. However, the molecular determinants and stress pathways involved in this recognition are largely unknown. Here we show that exposure of tumor cells to various stress situations led to tumor cell recognition by a Vγ8Vδ3 TCR. Using a strategy that we previously developed to identify antigenic ligands of γδ TCRs, annexin A2 was identified as the direct ligand of Vγ8Vδ3 TCR, and was found to be expressed on tumor cells upon the stress situations tested in a reactive oxygen species-dependent manner. Moreover, purified annexin A2 was able to stimulate the proliferation of a Vδ2neg γδ T-cell subset within peripheral blood mononuclear cells and other annexin A2-specific Vδ2neg γδ T-cell clones could be derived from peripheral blood mononuclear cells. We thus propose membrane exposure of annexin A2 as an oxidative stress signal for some Vδ2neg γδ T cells that could be involved in an adaptive stress surveillance.


Subject(s)
Annexin A2/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , Stress, Physiological , T-Lymphocyte Subsets/metabolism , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Humans , Immunity, Innate , Ligands , Lymphocyte Activation , Neoplasms/immunology , Neoplasms/metabolism , Oxidative Stress , Protein Binding , Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
13.
Oncoimmunology ; 4(5): e1003011, 2015 May.
Article in English | MEDLINE | ID: mdl-26155394

ABSTRACT

Human γδ T cells contribute to tissue homeostasis under normal conditions and participate in lymphoid stress surveillance against infection and tumors. However, the molecular mechanisms underlying the recognition of complex cell stress signatures by γδ T cells are still unclear. Tumor cells and human cytomegalovirus (HCMV)-infected cells are known targets of γδ T cells. We show here that many tumor and CMV-infected cells express caspase-1 inflammasomes and release interleukin (IL)-18. Engagement of the T-cell receptor (TCR) on Vδ2neg γδ T cells controlled the direct innate immune sensing of IL-18 that enhanced cytotoxicity and interferon gamma (IFNγ) production. This TCR-dependent sensitization to IL-18 was mediated by the upregulation of the innate IL-18 receptor ß chain (IL-18Rß) expression. These findings shed light on inflammasomes as a unified stress signal of tumor and infected cells to alert γδ T cells. Moreover, uncovering the TCR-mediated sensitization of γδ T cells to inflammatory mediators establishes a molecular link between the innate and adaptive immune functions of γδ T cells that could fine tune the commitment of antigen-experienced γδ T cells to inflammatory responses.

14.
Front Immunol ; 6: 3, 2015.
Article in English | MEDLINE | ID: mdl-25653652

ABSTRACT

Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct (CMV disease) and indirect effects (rejection and poor graft survival) in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2(neg) γδ T cells) has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced Vδ2(neg) γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional "adaptive" manner. Similarly, as CMV-specific CD8+ αß T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vδ2(neg) γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2(neg) γδ TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the major histocompatibility complex-related molecule endothelial protein C receptor. A singularity of CMV-induced Vδ2(neg) γδ T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2(neg) γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2(neg) γδ T cells have been involved in surveillance of malignancy subsequent to long-term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological biomarker in the management of CMV infection.

15.
Gut Pathog ; 6: 20, 2014.
Article in English | MEDLINE | ID: mdl-24995041

ABSTRACT

BACKGROUND: A gamma-glutamyl transpeptidase (GGT) is produced by up to 31% of strains of Campylobacter jejuni isolates. C. jejuni GGT is close to Helicobacter pylori GGT suggesting a conserved activity but unlike the latter, C. jejuni GGT has not been studied extensively. In line with the data available for H. pylori, our objectives were to purify C. jejuni GGT from the bacteria, and to evaluate its inhibitory and proapoptotic activities on epithelial cells and human lymphocytes. METHODS: C. jejuni GGT was purified from culture supernatants by chromatography. After verification of the purity by using mass spectrometry of the purified enzyme, its action on two epithelial cell lines and human lymphocytes was investigated. Cell culture as well as flow cytometry experiments were developed for these purposes. RESULTS: This study demonstrated that C. jejuni GGT is related to Helicobacter GGTs and inhibits the proliferation of epithelial cells with no proapoptotic activity. C. jejuni GGT also inhibits lymphocyte proliferation by causing a cell cycle arrest in the G0/G1 phase. These effects are abolished in the presence of a specific pharmacological inhibitor of GGT. CONCLUSION: C. jejuni GGT activity is comparable to that of other Epsilonproteobacteria GGTs and more generally to Helicobacter bilis (inhibition of epithelial cell and lymphocyte proliferation, however with no proapoptotic activity). It could therefore be considered as a pathogenicity factor and promote, via the inhibition of lymphocyte proliferation, the persistence of the bacteria in the host. These observations are consistent with a role of this enzyme in the pathophysiology of chronic infections associated with C. jejuni.

16.
J Am Soc Nephrol ; 25(11): 2471-82, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24744438

ABSTRACT

Human cytomegalovirus infection in transplant recipients has been associated with adverse renal allograft outcome and with a large γδ T-cell response, but whether both mechanisms are connected is unknown. We previously showed that most expanded circulating cytomegalovirus-responsive γδ T cells express the Fcγ-receptor CD16, suggesting that γδ T cells may participate in allograft lesions mediated by donor-specific antibodies through antibody-dependent cellular cytotoxicity. Here, we show that cytomegalovirus-specific CD16(pos) γδ T cells can perform antibody-dependent cellular cytotoxicity against stromal cells coated with donor-specific antibodies in vitro. In vivo, graft-infiltrating γδ T cells localized in close contact with endothelial cells only in patients who experienced cytomegalovirus infection and were more frequent within peritubular capillaries and glomeruli from antibody-mediated acute rejections than within those from T cell-mediated acute rejections. Finally, a persistently increased percentage of circulating cytomegalovirus-induced γδ T cells correlated inversely with the 1-year eGFR only in kidney recipients with donor-specific antibodies. Collectively, these data support the conclusion that cytomegalovirus-induced γδ T cells are involved in, and may serve as a clinical biomarker of, antibody-mediated lesions of kidney transplants. Moreover, these findings offer a new physiopathologic link between cytomegalovirus infection and allograft dysfunction in recipients with donor-specific antibodies.


Subject(s)
Cytomegalovirus Infections/immunology , Graft Rejection/immunology , Isoantibodies/immunology , Kidney Transplantation/adverse effects , Receptors, Antigen, T-Cell, gamma-delta/immunology , Adolescent , Adult , Aged , Cell Line, Transformed , Cytomegalovirus Infections/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Female , Fibroblasts/cytology , Fibroblasts/immunology , GPI-Linked Proteins/immunology , Histocompatibility Testing , Human Umbilical Vein Endothelial Cells , Humans , Killer Cells, Natural/immunology , Male , Microcirculation/immunology , Middle Aged , Perforin , Pore Forming Cytotoxic Proteins/immunology , Receptors, IgG/immunology , Transplantation, Homologous , Young Adult
17.
Cancer Immunol Immunother ; 62(7): 1199-210, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23619975

ABSTRACT

The role of human intraepithelial Vδ1(+) γδ T cell cytotoxic effectors in the immune surveillance against metastatic colon cancer has never been addressed, despite their reported capacity to infiltrate colon carcinomas and to kill colonic cancer cells in vitro. We previously showed that Vδ1(+) γδ T cells are enriched in blood in response to cytomegalovirus (CMV) infection, and that such increase may be protective against epithelial cancers. The objective of the present study was to investigate whether CMV-induced Vδ1(+) γδ T lymphocytes could inhibit the propagation of human colon tumors in vivo, in order to evaluate their immunotherapeutic potential in this context. Even though metastases are an important cause of death in various cancers including colorectal cancer (CRC), the anti-metastatic effect of immune effectors has been poorly analyzed. To this purpose, we set up a reliable model of metastatic colon cancer through orthotopic implantation of luciferase-expressing human HT29 cells in immunodeficient mice. Using bioluminescence imaging to follow the outcome of colonic cancer cells, we showed that a systemic treatment with CMV-induced Vδ1(+) γδ T cells could not only inhibit primary colon tumor growth but also the emergence of secondary tumor foci in the lungs and liver. Finally, our data lead to propose that Vδ1(+) γδ T lymphocytes may directly influence the appearance of metastases independently from their control of primary tumor size. These findings, which extend our previous work, pave the road for the potential manipulation of Vδ1(+) γδ T lymphocytes in novel anti-CRC immunotherapeutic protocols.


Subject(s)
Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Immunotherapy , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Cell Line, Tumor , Colonic Neoplasms/pathology , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis/immunology , Neoplasm Metastasis/prevention & control , Neoplasm Transplantation , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
18.
Hepatology ; 57(1): 195-204, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22865282

ABSTRACT

UNLABELLED: Hepatocellular carcinoma (HCC) is the major primary liver cancer. Glypican-3 (GPC3), one of the most abnormally expressed genes in HCC, participates in liver carcinogenesis. Based on data showing that GPC3 expression is posttranscriptionally altered in HCC cells compared to primary hepatocytes, we investigated the implication of microRNAs (miRNAs) in GPC3 overexpression and HCC. To identify GPC3-regulating miRNAs, we developed a dual-fluorescence FunREG (functional, integrated, and quantitative method to measure posttranscriptional regulations) system that allowed us to screen a library of 876 individual miRNAs. Expression of candidate miRNAs and that of GPC3 messenger RNA (mRNA) was measured in 21 nontumoral liver and 112 HCC samples. We then characterized the phenotypic consequences of modulating expression of one candidate miRNA in HuH7 cells and deciphered the molecular mechanism by which this miRNA controls the posttranscriptional regulation of GPC3. We identified five miRNAs targeting GPC3 3'-untranslated region (UTR) and regulating its expression about the 876 tested. Whereas miR-96 and its paralog miR-1271 repressed GPC3 expression, miR-129-1-3p, miR-1291, and miR-1303 had an inducible effect. We report that miR-1271 expression is down-regulated in HCC tumor samples and inversely correlates with GPC3 mRNA expression in a particular subgroup of HCC. We also report that miR-1271 inhibits the growth of HCC cells in a GPC3-dependent manner and induces cell death. CONCLUSION: Using a functional screen, we found that miR-96, miR-129-1-3p, miR-1271, miR-1291, and miR-1303 differentially control GPC3 expression in HCC cells. In a subgroup of HCC, the up-regulation of GPC3 was associated with a concomitant down-regulation of its repressor miR-1271. Therefore, we propose that GPC3 overexpression and its associated oncogenic effects are linked to the down-regulation of miR-1271 in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation, Neoplastic , Glypicans/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , 3' Untranslated Regions , Cell Line, Tumor , Hepatocytes/metabolism , Humans , RNA Processing, Post-Transcriptional
19.
Nat Immunol ; 13(9): 872-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22885985

ABSTRACT

T cells bearing γδ T cell antigen receptors (TCRs) function in lymphoid stress surveillance. However, the contribution of γδ TCRs to such responses is unclear. Here we found that the TCR of a human V(γ)4V(δ)5 clone directly bound endothelial protein C receptor (EPCR), which allowed γδ T cells to recognize both endothelial cells targeted by cytomegalovirus and epithelial tumors. EPCR is a major histocompatibility complex-like molecule that binds lipids analogously to the antigen-presenting molecule CD1d. However, the V(γ)4V(δ)5 TCR bound EPCR independently of lipids, in an antibody-like way. Moreover, the recognition of target cells by γδ T cells required a multimolecular stress signature composed of EPCR and costimulatory ligand(s). Our results demonstrate how a γδ TCR mediates recognition of broadly stressed human cells by engaging a stress-regulated self antigen.


Subject(s)
Antigens, CD/immunology , Cytomegalovirus Infections/immunology , Immunologic Surveillance/immunology , Neoplasms, Glandular and Epithelial/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Cell Surface/immunology , Stress, Physiological/immunology , Antigens, CD/metabolism , Cytomegalovirus/immunology , Endothelial Protein C Receptor , Humans , Immunoblotting , Immunoprecipitation , Protein Binding , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocyte Subsets/chemistry , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
Blood ; 119(6): 1418-27, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22180442

ABSTRACT

Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality in transplant recipients. Long-term protective immunity against HCMV requires both sustained specific T-cell response and neutralizing IgG production, but the interplay between these effector arms remains poorly defined. We previously demonstrated that γδ T cells play a substantial role as anti-HCMV T-cell effectors. The observation that CD16 (FcγRIIIA) was specifically expressed by the majority of HCMV-induced γδ T cells prompted us to investigate their cooperation with anti-HCMV IgG. We found that CD16 could stimulate γδ T cells independently of T-cell receptor (TCR) engagement and provide them with an intrinsic antibody-dependent cell-mediated cytotoxic (ADCC) potential. Although CD16(+)γδ T cells did not mediate ADCC against HCMV-infected cells, in accordance with the low level of anti-HCMV IgGs recognizing infected cells, they produced IFNγ when incubated with IgG-opsonized virions. This CD16-induced IFNγ production was greatly enhanced by IL12 and IFNα, 2 cytokines produced during HCMV infection, and conferred to γδ T cells the ability to inhibit HCMV multiplication in vitro. Taken together, these data identify a new antiviral function for γδ T cells through cooperation with anti-HCMV IgG that could contribute to surveillance of HCMV reactivation in transplant recipients.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Cytomegalovirus/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, IgG/immunology , T-Lymphocytes/immunology , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytomegalovirus/genetics , Flow Cytometry , Host-Pathogen Interactions/immunology , Humans , Immunocompetence/immunology , Immunocompromised Host/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Polymerase Chain Reaction , Protein Binding , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, IgG/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Virus Replication/genetics , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...