Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Environ Entomol ; 52(4): 681-691, 2023 08 18.
Article En | MEDLINE | ID: mdl-37329144

The blue orchard bee, Osmia lignaria Say (Hymenoptera: Megachilidae), is a solitary, cavity-nesting species used for pollinating spring blooming crops. Commercial stocks are sourced from a few locations in the western United States but are sold across the country. However, the existence of local adaptations of these bees is unknown, such as the propensity to nest in nearby provided materials or to disperse broadly beyond release sites. In spring 2019, California- and Utah-sourced blue orchard bees were introduced into cherry orchards in both source and reciprocal states. Nest boxes were placed near (within 78 m) and far (500 m-1 km) from central bee release points. Paint-marked bees were released when floral resources were available. Observations of marked bees at nest boxes were used to evaluate female retention and dispersal pattern. Nesting bee counts in March-blooming California orchards revealed a significant difference in female retention by population source; over twice as many UT bees established nests than did CA bees. Few females were found at far nest sites. In May-blooming Utah orchards, counts of CA and UT bees were similar at near and far nest sites; neither female retention nor dispersal was significantly affected by bee origin. It is concerning that CA females were less likely to be retained in California orchards because the demand for commercial pollination is high for early-blooming California almond and cherry. Our results highlight the need to understand potential consequences of bee origin and their management on pollinator performance and reproduction in target crops.


Hymenoptera , Prunus dulcis , Bees , Female , Animals , Pollination , Reproduction , Seasons
2.
J Insect Sci ; 23(3)2023 May 01.
Article En | MEDLINE | ID: mdl-37256697

Melittobia acasta Walker is one among other hymenopterous parasitoids of Megachile rotundata F. Commercial M. rotundata populations are employed to pollinate North American alfalfa for seed production. This wasp can be prolific when using M. rotundata as a host and can reduce or destroy bee stocks. Hundreds of M. acasta female offspring can develop in a single M. rotundata cell and disperse to infest other cells, producing thousands of more parasitoids. In this study, we determined (i) upon what bee life stages M. acasta females choose to lay eggs and if those eggs ultimately become adults and (ii) M. acasta female longevity when exposed to various resources within M. rotundata cells. We found that M. acasta females lay eggs on M. rotundata prepupae and pupae and that those eggs can hatch and survive to adulthood. Eggs are not laid on early instar bee larvae; eggs laid on adults do not survive. Average female life span is 5 days without feeding, 8-9 days if a pollen-nectar provision is available while the bee develops through larval stages, and 34 days if the wasp can feed on prepupal hemolymph. Wasp females can emerge from bee cells several days after trays of cells are taken to fields. Therefore, adult females could survive long enough for new bee offspring to become prepupae. Our findings support a better understanding of host life stage preference and the longevity of M. acasta females that can inform the timing of the implementation of possible control measures.


Hymenoptera , Wasps , Bees , Female , Animals , Longevity , Ovum , Larva , Medicago sativa
3.
J Econ Entomol ; 116(2): 359-367, 2023 04 24.
Article En | MEDLINE | ID: mdl-36715155

Osmia lignaria Say is used in combination with Apis mellifera L. to pollinate U.S. orchard crops. The deployment of O. lignaria requires artificial warming to synchronize adult bee emergence with crop bloom. However, current methods for emerging bees are time consuming and inefficient; the Hivetop Incubator (HTI) invention creates a space atop an A. mellifera hive whose heat flows through the screened bottom of the HTI to incubate cocooned O. lignaria adults therein. In response to HTI heat, O. lignaria adults chew out of cocoons, find an exit hole, and fly away to nest in provided nesting sites and, thereby, pollinate a crop. Objectives for studies performed in Utah and Washington were to: 1) determine whether HTIs inhibit A. mellifera thermoregulation or colony growth, 2) compare O. lignaria emergence duration from an HTI with and without hive heat, and 3) assess whether O. lignaria females leave HTIs located at the orchard edge to nest throughout the orchard. We found no significant differences between the internal temperatures of A. mellifera colonies with and without HTIs and no impact on A. mellifera food storage or brood production. Osmia lignaria in hive-heated HTIs emerged 3× faster than bees in unheated HTIs. Heated HTIs were significantly cooler than hive temperatures but significantly warmer than HTIs atop empty hive boxes. Osmia lignaria nest distribution was not correlated to the location of HTIs at the orchard edge. Overall, HTIs were effective for timely, on-site emergence of O. lignaria for orchard pollination without negatively impacting A. mellifera colonies.


Hymenoptera , Female , Bees , Animals , Pollination , Utah , Temperature , Incubators
4.
J Insect Sci ; 23(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36611021

Comprehensive decisions on the management of commercially produced bees, depend largely on associated knowledge of genetic diversity. In this study, we present novel microsatellite markers to support the breeding, management, and conservation of the blue orchard bee, Osmia lignaria Say (Hymenoptera: Megachilidae). Native to North America, O. lignaria has been trapped from wildlands and propagated on-crop and used to pollinate certain fruit, nut, and berry crops. Harnessing the O. lignaria genome assembly, we identified 59,632 candidate microsatellite loci in silico, of which 22 were tested using molecular techniques. Of the 22 loci, 12 loci were in Hardy-Weinberg equilibrium (HWE), demonstrated no linkage disequilibrium (LD), and achieved low genotyping error in two Intermountain North American wild populations in Idaho and Utah, USA. We found no difference in population genetic diversity between the two populations, but there was evidence for low but significant population differentiation. Also, to determine if these markers amplify in other Osmia, we assessed 23 species across the clades apicata, bicornis, emarginata, and ribifloris. Nine loci amplified in three species/subspecies of apicata, 22 loci amplified in 11 species/subspecies of bicornis, 11 loci amplified in seven species/subspecies of emarginata, and 22 loci amplified in two species/subspecies of ribifloris. Further testing is necessary to determine the capacity of these microsatellite loci to characterize genetic diversity and structure under the assumption of HWE and LD for species beyond O. lignaria. These markers will inform the conservation and commercial use of trapped and managed O. lignaria and other Osmia species for both agricultural and nonagricultural systems.


Hymenoptera , Bees/genetics , Animals , Crops, Agricultural/genetics , Agriculture/methods , Fruit , Utah , Microsatellite Repeats
5.
Ecology ; 103(3): e3614, 2022 03.
Article En | MEDLINE | ID: mdl-34921678

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Ecosystem , Pollination , Animals , Bees , Crops, Agricultural , Flowers , Insecta
6.
Environ Entomol ; 51(1): 240-251, 2022 02 16.
Article En | MEDLINE | ID: mdl-34718488

Wild and managed bee populations are in decline, and one of many environmental causes is the impact of pesticides on developing bees. For solitary bees, delayed larval development could lead to asynchronous adult emergence, unhealthy and inefficient adult pollinators, and decreased brood production and survival. We examined a methodology for testing Osmia lignaria Say (Hymenoptera: Megachilidae) larval responses to pesticide exposure using a laboratory bioassay. We created two provision types: a homogenized blend of O. lignaria provisions from an apple orchard and homogenized almond pollen pellets collected by honey bees plus sugar water. Pesticides were administered to the provisions to compare toxic effects. We recorded larval developmental durations for second-fifth instar and for fifth instar to cocoon initiation for larvae fed provisions treated with water (control) or doses of three pesticides and a representative spray-tank mixture (acetamiprid, boscalid/pyraclostrobin, dimethoate, and acetamiprid plus boscalid/pyraclostrobin). All larvae survived to cocoon initiation when only water was added to provisions. Impacts of pesticide treatments significantly differed between the apple and almond homogenates. The greatest treatment effects occurred when the homogenized almond provision was mixed with acetamiprid alone and when combined with boscalid/pyraclostrobin. Optimizing bioassays through the use of appropriate larval food for exposing solitary bee larvae to agrochemicals is crucial for assessing risks for pollinators.


Hymenoptera , Pesticides , Prunus dulcis , Animals , Bees , Hymenoptera/physiology , Larva , Pesticides/toxicity , Pollen
7.
Front Genet ; 13: 1064332, 2022.
Article En | MEDLINE | ID: mdl-36685934

Maternal effects are an important source of phenotypic variance, whereby females influence offspring developmental trajectory beyond direct genetic contributions, often in response to changing environmental conditions. However, relatively little is known about the mechanisms by which maternal experience is translated into molecular signals that shape offspring development. One such signal may be maternal RNA transcripts (mRNAs and miRNAs) deposited into maturing oocytes. These regulate the earliest stages of development of all animals, but are understudied in most insects. Here we investigated the effects of female internal (body condition) and external (time of season) environmental conditions on maternal RNA in the maturing oocytes and 24-h-old eggs (24-h eggs) of alfalfa leafcutting bees. Using gene expression and WGCNA analysis, we found that females adjust the quantity of mRNAs related to protein phosphorylation, transcriptional regulation, and nuclease activity deposited into maturing oocytes in response to both poor body condition and shorter day lengths that accompany the late season. However, the magnitude of these changes was higher for time of season. Females also adjusted miRNA deposition in response to seasonal changes, but not body condition. We did not observe significant changes in maternal RNAs in response to either body condition or time of season in 24-h eggs, which were past the maternal-to-zygotic transition. Our results suggest that females adjust the RNA transcripts they provide for offspring to regulate development in response to both internal and external environmental cues. Variation in maternal RNAs may, therefore, be important for regulating offspring phenotype in response to environmental change.

8.
PeerJ ; 9: e12344, 2021.
Article En | MEDLINE | ID: mdl-34760367

Metrics to assess relative adult bee body size have included both mass and morphometrics, but these metrics may not equally or reliably estimate body size for all bee species and in all situations, due to bee age, diet, and/or environment. Understanding the relationships between different metrics and possible redundancies in the information they afford is important but not always known. Body size measurements provide valuable data for interpreting research outcomes for managed solitary bees, including Osmia lignaria Say and Megachile rotundata F. (Hymenoptera: Megachilidae). Applied studies of these important and readily available U.S. crop pollinators focus on refining commercial management practices, and basic empirical studies in various scientific disciplines (from genomics to ecology) employ them as model systems to study solitary bees. To examine common metrics of body size, we measured head capsule width (HCW), intertegular distance (ITD), and fresh and dry weights of newly emerged adults of both species. Using linear and exponential models, we determined relationships between these body size metrics. For M. rotundata, linear models best described relationships between ITD and all other metrics, and between HCW and fresh and dry weights. For O. lignaria, linear models best fit relationships between all metrics except for fresh weight with both ITD and HCW, which were fitted better with exponential models. For both species, model fits were strongest when males and females were pooled. Depending on the study question, knowing that only one metric may reliably measure body size can simplify evaluations of O. lignaria and M. rotundata responses to artificial or environmental variables.

9.
Ecol Evol ; 10(7): 3189-3199, 2020 Apr.
Article En | MEDLINE | ID: mdl-32273980

Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.

10.
Environ Entomol ; 49(2): 516-527, 2020 04 14.
Article En | MEDLINE | ID: mdl-31961923

Megachile rotundata F. populations are managed to pollinate alfalfa, Medicago sativa L. (Fabaceae), for seed production in western North America. Some progeny produced in summer by overwintered M. rotundata females enter diapause as prepupae to overwinter and become adults the following year. Other offspring avert diapause to undergo adult emergence in summer. The regulatory mechanism(s) of diapause induction or aversion is unknown; the process apparently involves multiple and integrated factors. This 4-yr study sought to determine effects of the exposure of mother bees to short, long, very long, and natural photoperiods on their production of non-diapausing and diapausing progeny. Just-emerged adult bees from both Utah and Canada sources were exposed to different photoperiods for 3 d in incubators and then released into field enclosures placed over blooming alfalfa. Control bees were those exposed to only outdoor conditions. Reproduction was monitored for each female bee, and offspring diapause outcome was recorded. Progeny outcome data were informative for only two of the four study years. Generally, progeny of Utah mothers exposed to long and very long photoperiods were more likely to be non-diapausers compared to progeny of mothers exposed to short and control photoperiods. Short and long (but not very long) photoperiod maternal exposures increased the likelihood of diapause aversion in Canada progeny. Performing multiyear field studies on geographically distinct populations is imperative for revealing environmental challenges and inconsistent bee performance that can impair analyses and interpretation. Future similar studies are needed to more fully evaluate photoperiod effects on diapause.


Diapause, Insect , Diapause , Hymenoptera , Animals , Bees , Canada , Female , North America , Photoperiod , Utah
11.
PeerJ ; 7: e7639, 2019.
Article En | MEDLINE | ID: mdl-31534860

Osmia lignaria is a commercially available, native solitary bee species recognized for its propensity to forage upon and pollinate tree fruit crops such as apple, almond and cherry. This study evaluated the implementation of O. lignaria co-pollination with honey bees in central Utah commercial tart cherry orchards during 2017 and 2018 bloom. Three paired 1.2 ha sites were selected for evaluation of cherry fruit set and yield with and without managed O. lignaria releases alongside the standard honey bee hive stocking rate of 2.5 hives/ha. Osmia lignaria supplementation did not measurably increase cherry fruit set, fruit per limb cross-sectional area or fruit weight. The lack of differences in yield is likely a consequence of local saturation of pollinator services supplied by managed honey bees throughout experimental orchards, such that no additive benefit of managed O. lignaria releases were measurable. An increase in managed O. lignaria populations was achieved in 2017 but not 2018, possibly due to unknown changes to orchard management or environmental factors. While flying O. lignaria in Utah tart cherries may support sustainable in-field bee propagation, their subsequent impacts on tart cherry yield were not detected when paired with standard stocking densities of honey bees.

12.
Environ Entomol ; 48(1): 22-35, 2019 02 13.
Article En | MEDLINE | ID: mdl-30508080

Current pesticide risk assessment for bees relies on a single (social) species, the western honey bee, Apis mellifera L. (Hymenoptera: Apidae). However, most of the >20,000 bee species worldwide are solitary. Differences in life history traits between solitary bees (SB) and honey bees (HB) are likely to determine differences in routes and levels of pesticide exposure. The objectives of this review are to: 1) compare SB and HB life history traits relevant for risk assessment; 2) summarize current knowledge about levels of pesticide exposure for SB and HB; 3) identify knowledge gaps and research needs; 4) evaluate whether current HB risk assessment schemes cover routes and levels of exposure of SB; and 5) identify potential SB model species for risk assessment. Most SB exposure routes seem well covered by current HB risk assessment schemes. Exceptions to this are exposure routes related to nesting substrates and nesting materials used by SB. Exposure via soil is of particular concern because most SB species nest underground. Six SB species (Hymenoptera: Megachilidae - Osmia bicornis L., O. cornifrons Radoszkowski, O. cornuta Latreille, O. lignaria Say, Megachile rotundata F., and Halictidae - Nomia melanderi Cockerell) are commercially available and could be used in risk assessment. Of these, only N. melanderi nests underground, and the rest are cavity-nesters. However, the three Osmia species collect soil to build their nests. Life history traits of cavity-nesting species make them particularly suitable for semifield and, to a lesser extent, field tests. Future studies should address basic biology, rearing methods and levels of exposure of ground-nesting SB species.


Bees/growth & development , Environmental Exposure , Pesticides/toxicity , Animals , Female , Life Cycle Stages , Risk Assessment
13.
Environ Entomol ; 48(1): 4-11, 2019 02 13.
Article En | MEDLINE | ID: mdl-30508116

Current pesticide risk assessment practices use the honey bee, Apis mellifera L., as a surrogate to characterize the likelihood of chemical exposure of a candidate pesticide for all bee species. Bees make up a diverse insect group that provides critical pollination services to both managed and wild ecosystems. Accordingly, they display a diversity of behaviors and vary greatly in their lifestyles and phenologies, such as their timing of emergence, degree of sociality, and foraging and nesting behaviors. Some of these factors may lead to disparate or variable routes of exposure when compared to honey bees. For those that possess life histories that are distinct from A. mellifera, further risk assessments may be warranted. In January 2017, 40 bee researchers, representative of regulatory agencies, academia, and agrochemical industries, gathered to discuss the current state of science on pesticide exposure to non-Apis bees and to determine how well honey bee exposure estimates, implemented by different regulatory agencies, may be protective for non-Apis bees. Workshop participants determined that although current risk assessment procedures for honey bees are largely conservative, several routes of exposure are unique to non-Apis bees and warranted further investigation. In this forum article, we discuss these key routes of exposure relevant to non-Apis bees and identify important research gaps that can help inform future bee risk assessment decisions.


Bees , Environmental Exposure , Pesticides/toxicity , Animals , Female , Larva , Risk Assessment
14.
J Insect Sci ; 18(3)2018 May 01.
Article En | MEDLINE | ID: mdl-29873755

Studies of bee movement and activities across a landscape are important for developing an understanding of their behavior and their ability to withstand environmental stress. Recent research has shown that proteins, such as egg albumin, are effective for mass-marking bees. However, current protein mass-marking techniques require sacrificing individual bees during the data collection process. A nonlethal sampling method for protein mark-capture research is sorely needed, particularly for vulnerable, sensitive, or economically valuable species. This study describes a nonlethal sampling method, in which three non-Apis bee species (Bombus bifarius Cresson [Hymenoptera: Apidae], Osmia lignaria Say [Hymenoptera: Megachilidae], and Megachile rotundata Fabricius [Hymenoptera: Megachilidae]) were tested for a unique protein marker by immersing them momentarily in saline buffer and releasing them. Results showed that an egg albumin-specific enzyme-linked immunosorbent assay was 100% effective at detecting the protein on bees that were sampled nonlethally. Furthermore, this sampling method did not have an impact on bee survivorship, suggesting that immersing bees in buffer is a reliable and valid surrogate to traditional, destructive sampling methods for mark-capture bee studies.


Bees , Entomology/methods , Insect Proteins/analysis , Animals
15.
J Exp Biol ; 221(Pt 13)2018 07 06.
Article En | MEDLINE | ID: mdl-29748214

Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNA sequencing (RNA-seq). However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause development because previous studies have focused on laboratory-reared and -maintained insects. To determine whether gene expression differs between laboratory and field conditions, prepupae of the alfalfa leafcutting bee, Megachile rotundata, entering diapause early or late in the growing season were collected. These two groups were further subdivided in early autumn into laboratory- and field-maintained groups, resulting in four experimental treatments of diapausing prepupae: early and late field, and early and late laboratory. RNA-seq and differential expression analyses were performed on bees from the four treatment groups in November, January, March and May. The number of treatment-specific differentially expressed genes (97 to 1249) outnumbered the number of differentially regulated genes common to all four treatments (14 to 229), indicating that exposure to laboratory or field conditions had a major impact on gene expression during diapause development. Principle component analysis and hierarchical cluster analysis yielded similar grouping of treatments, confirming that the treatments form distinct clusters. Our results support the conclusion that gene expression during the course of diapause development is not a simple ordered sequence, but rather a highly plastic response determined primarily by the environmental history of the individual insect.


Bees/genetics , Diapause/genetics , Environment , Gene Expression , Animals , Bees/growth & development , Gene Expression Profiling , Seasons , Sequence Analysis, RNA
16.
Environ Entomol ; 47(2): 364-377, 2018 04 05.
Article En | MEDLINE | ID: mdl-29471414

Pollination services provided by managed bees are essential for California almond (Prunus dulcis Mill.; Rosales: Rosaceae) production. Currently, pollination needs are met by rented or owned Apis mellifera L. (Hymenoptera: Apidae; honey bee) colonies. Excessive demand on a challenged A. mellifera industry to provide strong colonies in early spring has caused sharp increases in rental prices over the past decade, inviting the consideration of alternative pollinators in addition to, or in place of, A. mellifera. Osmia lignaria Say (Hymenoptera: Megachilidae; the blue orchard bee) is an excellent pollinator of fruit and nut trees, but its pollination impacts when used in tandem with A. mellifera have yet to be evaluated in commercial almond orchards. A 2-yr study was conducted in California orchards to compare almond pollination and production using A. mellifera as sole pollinator to an alternative practice of adding O. lignaria as a co-pollinator with A. mellifera. Almond orchard managerial decisions, such as for pesticide use and irrigation intensity, vary between almond growing regions because of local climates. Therefore, both north-central and southern sites of California's San Joaquin Valley are represented. We compared bee visitation, nut set, and nut yield between orchards and between tree rows within orchards. Also, O. lignaria reproductive success was recorded to assure that these bees remained in the orchards as pollinators and to assess the ability to sustain these bees under regional orchard conditions. We demonstrated that augmenting large commercial almond orchards with O. lignaria can significantly increase nut set and sometimes nut yield in both regions evaluated.


Agriculture/methods , Bees , Nuts/growth & development , Pollination , Prunus dulcis/physiology , Animals , California , Female , Male
17.
J Econ Entomol ; 111(1): 16-25, 2018 02 09.
Article En | MEDLINE | ID: mdl-29272519

Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions.


Bees/physiology , Crop Production/economics , Pollination , Prunus dulcis/growth & development , Animals , California , Cost-Benefit Analysis , Models, Biological , Species Specificity
18.
Environ Entomol ; 46(5): 1070-1079, 2017 10 01.
Article En | MEDLINE | ID: mdl-28981639

Phenotypic plasticity involves adaptive responses to predictable environmental fluctuations and may promote evolutionary change. We studied the regulation of phenotypic plasticity in an important agricultural pollinator, the solitary alfalfa leafcutting bee (Megachile rotundata F.). Specifically, we investigated how larval nutrition affects M. rotundata diapause plasticity and how diapause plasticity affects adult female reproductive behavior. Field surveys and laboratory manipulations of aspects of larval diet demonstrated nutritional regulation of M. rotundata diapause plasticity. Manipulation of larval diet quality through the addition of royal jelly, the caste-determining substance of the honey bee Apis mellifera L., increased the probability of diapause in M. rotundata. We also found that larval nutrition and diapause status affected M. rotundata adult female reproductive behavior. Nutritional effects on larval diapause that also impact adult fitness have intriguing implications for the evolution of developmental plasticity in bees. In particular, as the solitary lifestyle of M. rotundata is considered to be the ancestral condition in bees, nutritionally regulated plasticity may have been an ancestral condition in all bees that facilitated the evolution of other forms of phenotypic plasticity, such as the castes of social bees.


Animal Nutritional Physiological Phenomena , Bees/physiology , Phenotype , Animals , Body Weight , Diapause, Insect , Female , Larva/physiology , Nesting Behavior
19.
J Chem Ecol ; 43(5): 451-468, 2017 May.
Article En | MEDLINE | ID: mdl-28500569

Species-specific biochemistry, morphology, and function of the Dufour's gland have been investigated for social bees and some non-social bee families. Most of the solitary bees previously examined are ground-nesting bees that use Dufour's gland secretions to line brood chambers. This study examines the chemistry of the cuticle and Dufour's gland of cavity-nesting Megachile rotundata and Osmia lignaria, which are species managed for crop pollination. Glandular and cuticular lipid compositions were characterized and compared to each other and according to the nesting experience of adult females. Major lipid classes found were hydrocarbons, free fatty acids, and wax esters. Many components were common to the cuticle and Dufour's glands of each species, yet not identical in number or relative composition. Wax esters and fatty acids were more prevalent in Dufour's glands of M. rotundata than on cuticles. Wax esters were more abundant on cuticles of O. lignaria than in Dufour's glands. In both species, fatty acids were more prevalent in glands of field-collected females compared to any other sample type. Chemical profiles of cuticles and glands were distinct from each other, and, for O. lignaria, profiles of laboratory-maintained bees could be distinguished from those of field-collected bees. Comparison of percentiles of individual components of cuticular and glandular profiles of the same bee showed that the proportions of some cuticular components were predictive of the proportion of the same glandular components, especially for nesting females. Lastly, evidence suggested that Dufour's gland is the major source of nest-marking substances in M. rotundata, but evidence for this role in O. lignaria was less conclusive.


Bees/chemistry , Fatty Acids/analysis , Hydrocarbons/analysis , Animals , Bees/metabolism , Discriminant Analysis , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Principal Component Analysis , Species Specificity
20.
Environ Entomol ; 46(3): 559-564, 2017 06 01.
Article En | MEDLINE | ID: mdl-28379320

The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop.


Agriculture/methods , Bees/physiology , Pollination , Prunus dulcis , Animals , Appetitive Behavior , California , Crops, Agricultural/growth & development , Flowers/growth & development , Prunus dulcis/growth & development , Seasons
...