Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(5): 107238, 2024 May.
Article in English | MEDLINE | ID: mdl-38552736

ABSTRACT

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Subject(s)
Alternaria , Blue Light , Flavin-Adenine Dinucleotide , Fungal Proteins , Photoreceptors, Microbial , Alternaria/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Gene Expression Regulation, Fungal , Photoreceptors, Microbial/metabolism , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Phytochrome/metabolism , Phytochrome/chemistry , Phytochrome/genetics , Protein Domains , Reactive Oxygen Species/metabolism , Temperature
2.
Mol Microbiol ; 121(1): 18-25, 2024 01.
Article in English | MEDLINE | ID: mdl-37961029

ABSTRACT

Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.


Subject(s)
Aflatoxins , Polyketides , Secondary Metabolism/genetics , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Genome, Fungal , Polyketides/metabolism , Multigene Family , Aflatoxins/metabolism , Genes, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL