Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Psychiatry Res ; 342: 116165, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39316999

ABSTRACT

Hyperstable arousal regulation during a 15-min resting electroencephalogram (EEG) has been linked to a favorable response to antidepressants. The EMBARC study, a multicenter randomized placebo-controlled clinical trial, provides an opportunity to examine arousal stability as putative antidepressant response predictor in short EEG recordings. We tested the hypothesis that high arousal stability during a 2-min resting EEG at baseline is related to better outcome in the sertraline arm and explored the specificity of this effect. Outpatients with chronic/recurrent MDD were recruited from four university hospitals and randomized to treatment with sertraline (n = 100) or placebo (n = 104). The change in the Hamilton Rating Scale for Depression (HRSD-17) was the main outcome. Patients were stratified into high and low arousal stability groups. In mixed-model repeated measures (MMRM) analysis HRSD-17 change differed significantly between arousal groups, with high arousal stability being associated with a better outcome in the sertraline arm, and worse outcome in the placebo arm at week 4, with moderate effect sizes. When considering both treatment arms, a significant arousal group x time x treatment interaction emerged, highlighting specificity to the sertraline arm. Although findings indicate that arousal stability is likely to be a treatment-specific marker of response, further out-of-sample validation is warranted.

2.
medRxiv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39281741

ABSTRACT

As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.

3.
Biol Psychiatry Glob Open Sci ; 4(6): 100369, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39282653

ABSTRACT

Background: Loneliness and social isolation have detrimental consequences for mental health and act as vulnerability factors for the development of depressive symptoms, such as anhedonia. The mitigation strategies used to contain COVID-19, such as social distancing and lockdowns, allowed us to investigate putative associations between daily objective and perceived social isolation and anhedonic-like behavior. Methods: Reward-related functioning was objectively assessed using the Probabilistic Reward Task. A total of 114 unselected healthy individuals (71% female) underwent both a laboratory and an ecological momentary assessment. Computational modeling was applied to performance on the Probabilistic Reward Task to disentangle reward sensitivity and learning rate. Results: Findings revealed that objective, but not subjective, daily social interactions were associated with motivational behavior. Specifically, higher social isolation (less time spent with others) was associated with higher responsivity to rewarding stimuli and a reduced influence of a given reward on successive behavioral choices. Conclusions: Overall, the current results broaden our knowledge of the potential pathways that link (COVID-19-related) social isolation to altered motivational functioning.


Loneliness and social isolation negatively impact mental health and contribute to depressive symptoms like anhedonia. With COVID-19 restrictions such as social distancing, we examined how daily social isolation, measured ecologically, is related to anhedonic behavior. We tested 114 healthy adults using a task that measured their responses to rewards. Greater isolation was linked to an increased response to rewards but also to a reduced ability to learn from them, which lessened the influence of rewards on future behavior. These findings highlight potential mechanisms that link social isolation to changes in motivation, ultimately leading to depressive symptoms.

4.
Biol Psychiatry Glob Open Sci ; 4(6): 100362, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39262818

ABSTRACT

Background: Exposure to adversity, including unpredictable environments, during early life is associated with neuropsychiatric illness in adulthood. One common factor in this sequela is anhedonia, the loss of responsivity to previously reinforcing stimuli. To accelerate the development of new treatment strategies for anhedonic disorders induced by early-life adversity, animal models have been developed to capture critical features of early-life stress and the behavioral deficits that such stressors induce. We have previously shown that rats exposed to the limited bedding and nesting protocol exhibited blunted reward responsivity in the probabilistic reward task, a touchscreen-based task reverse translated from human studies. Methods: To test the quantitative limits of this translational platform, we examined the ability of Bayesian computational modeling and probability analyses identical to those optimized in previous human studies to quantify the putative mechanisms that underlie these deficits with precision. Specifically, 2 parameters that have been shown to independently contribute to probabilistic reward task outcomes in patient populations, reward sensitivity and learning rate, were extracted, as were trial-by-trial probability analyses of choices as a function of the preceding trial. Results: Significant deficits in reward sensitivity, but not learning rate, contributed to the anhedonic phenotypes in rats exposed to early-life adversity. Conclusions: The current findings confirm and extend the translational value of these rodent models by verifying the effectiveness of computational modeling in distinguishing independent features of reward sensitivity and learning rate that complement the probabilistic reward task's signal detection end points. Together, these metrics serve to objectively quantify reinforcement learning deficits associated with anhedonic phenotypes.


Exposure to early-life adversity can lead to psychiatric illness, including anhedonia, the loss of pleasure from previously rewarding activities. This article describes findings from rats exposed to a model of simulated poverty on a touchscreen-based assay reverse translated from a task used to characterize anhedonia in humans. We documented the ability of Bayesian computational modeling and probability analyses, identical to those used with humans, to objectively quantify reinforcement learning deficits associated with anhedonia in rats.

5.
J Affect Disord ; 368: 1-7, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233242

ABSTRACT

The neurobiological mechanisms underlying the placebo phenomenon in patients with major depressive disorder (MDD) remain largely unknown. The progressive rise in rates of placebo responses within clinical trials over the past two decades may impede the detection of a true signal and thus present a major obstacle in new treatment development. Understanding the mechanisms would have several important implications, including (1) identifying biomarkers of placebo responders (thereby identifying those individuals who could benefit therapeutically from such interventions), (2) opening new avenues for manipulating such mechanisms to maximize symptom reduction, and (3) refining treatments with approaches that decrease (in clinical trials) or increase (in clinical practice) the placebo response. Here we investigated the research question: is the dopaminergic system one of the neurobiological underpinnings of the placebo response within MDD? Inspired by preclinical and clinical findings that have implicated dopamine in the occurrence, prediction, and expectation of reward, we hypothesized that dopaminergic activity in the mesolimbic system is a critical mediator of placebo response in MDD. To test this hypothesis, we designed a double-blind, placebo-controlled, sequential parallel comparison design clinical trial aimed at maximizing placebo antidepressant response. We integrated behavioral, imaging, and hemodynamic probes of mesocorticolimbic dopaminergic pathways within the context of manipulations of psychological constructs previously linked to placebo responses (e.g., expectation of improvement). The aim of this manuscript is to present the rationale of the study design and to demonstrate how a cross-modal methodology may be utilized to investigate the role of reward circuitry in placebo response in MDD.

6.
Transl Psychiatry ; 14(1): 303, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043642

ABSTRACT

Poor inhibitory control contributes to deficits in emotion regulation, which are often targeted by treatments for major depressive disorder (MDD), including cognitive behavioral therapy (CBT). Brain regions that contribute to inhibitory control and emotion regulation overlap; thus, inhibitory control might relate to response to CBT. In this study, we examined whether baseline inhibitory control and resting state functional connectivity (rsFC) within overlapping emotion regulation-inhibitory control regions predicted treatment response to internet-based CBT (iCBT). Participants with MDD were randomly assigned to iCBT (N = 30) or a monitored attention control (MAC) condition (N = 30). Elastic net regression was used to predict post-treatment Patient Health Questionnaire-9 (PHQ-9) scores from baseline variables, including demographic variables, PHQ-9 scores, Flanker effects (interference, sequential dependency, post-error slowing), and rsFC between the dorsal anterior cingulate cortex, bilateral anterior insula (AI), and right temporoparietal junction (TPJ). Essential prognostic predictor variables retained in the elastic net regression included treatment group, gender, Flanker interference response time (RT), right AI-TPJ rsFC, and left AI-right AI rsFC. Prescriptive predictor variables retained included interactions between treatment group and baseline PHQ-9 scores, age, gender, Flanker RT, sequential dependency effects on accuracy, post-error accuracy, right AI-TPJ rsFC, and left AI-right AI rsFC. Inhibitory control and rsFC within inhibitory control-emotion regulation regions predicted reduced symptom severity following iCBT, and these effects were stronger in the iCBT group than in the MAC group. These findings contribute to a growing literature indicating that stronger inhibitory control at baseline predicts better outcomes to psychotherapy, including iCBT.


Subject(s)
Cognitive Behavioral Therapy , Depressive Disorder, Major , Inhibition, Psychological , Magnetic Resonance Imaging , Humans , Male , Female , Cognitive Behavioral Therapy/methods , Adult , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Middle Aged , Emotional Regulation/physiology , Treatment Outcome , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Young Adult , Internet , Internet-Based Intervention , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology
8.
JAMA Psychiatry ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083325

ABSTRACT

Importance: Research on resilience after trauma has often focused on individual-level factors (eg, ability to cope with adversity) and overlooked influential neighborhood-level factors that may help mitigate the development of posttraumatic stress disorder (PTSD). Objective: To investigate whether an interaction between residential greenspace and self-reported individual resources was associated with a resilient PTSD trajectory (ie, low/no symptoms) and to test if the association between greenspace and PTSD trajectory was mediated by neural reactivity to reward. Design, Setting, and Participants: As part of a longitudinal cohort study, trauma survivors were recruited from emergency departments across the US. Two weeks after trauma, a subset of participants underwent functional magnetic resonance imaging during a monetary reward task. Study data were analyzed from January to November 2023. Exposures: Residential greenspace within a 100-m buffer of each participant's home address was derived from satellite imagery and quantified using the Normalized Difference Vegetation Index and perceived individual resources measured by the Connor-Davidson Resilience Scale (CD-RISC). Main Outcome and Measures: PTSD symptom severity measured at 2 weeks, 8 weeks, 3 months, and 6 months after trauma. Neural responses to monetary reward in reward-related regions (ie, amygdala, nucleus accumbens, orbitofrontal cortex) was a secondary outcome. Covariates included both geocoded (eg, area deprivation index) and self-reported characteristics (eg, childhood maltreatment, income). Results: In 2597 trauma survivors (mean [SD] age, 36.5 [13.4] years; 1637 female [63%]; 1304 non-Hispanic Black [50.2%], 289 Hispanic [11.1%], 901 non-Hispanic White [34.7%], 93 non-Hispanic other race [3.6%], and 10 missing/unreported [0.4%]), 6 PTSD trajectories (resilient, nonremitting high, nonremitting moderate, slow recovery, rapid recovery, delayed) were identified through latent-class mixed-effect modeling. Multinominal logistic regressions revealed that for individuals with higher CD-RISC scores, greenspace was associated with a greater likelihood of assignment in a resilient trajectory compared with nonremitting high (Wald z test = -3.92; P < .001), nonremitting moderate (Wald z test = -2.24; P = .03), or slow recovery (Wald z test = -2.27; P = .02) classes. Greenspace was also associated with greater neural reactivity to reward in the amygdala (n = 288; t277 = 2.83; adjusted P value = 0.02); however, reward reactivity did not differ by PTSD trajectory. Conclusions and Relevance: In this cohort study, greenspace and self-reported individual resources were significantly associated with PTSD trajectories. These findings suggest that factors at multiple ecological levels may contribute to the likelihood of resiliency to PTSD after trauma.

9.
Nat Commun ; 15(1): 5207, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890310

ABSTRACT

Approximately 40% of dementia cases could be prevented or delayed by modifiable risk factors related to lifestyle and environment. These risk factors, such as depression and vascular disease, do not affect all individuals in the same way, likely due to inter-individual differences in genetics. However, the precise nature of how genetic risk profiles interact with modifiable risk factors to affect brain health is poorly understood. Here we combine multiple data resources, including genotyping and postmortem gene expression, to map the genetic landscape of brain structure and identify 367 loci associated with cortical thickness and 13 loci associated with white matter hyperintensities (P < 5×10-8), with several loci also showing a significant association with cognitive function. We show that among 220 unique genetic loci associated with cortical thickness in our genome-wide association studies (GWAS), 95 also showed evidence of interaction with depression or cardiovascular conditions. Polygenic risk scores based on our GWAS of inferior frontal thickness also interacted with hypertension in predicting executive function in the Canadian Longitudinal Study on Aging. These findings advance our understanding of the genetic underpinning of brain structure and show that genetic risk for brain and cognitive health is in part moderated by treatable mid-life factors.


Subject(s)
Brain , Cardiovascular Diseases , Cognition , Depression , Genome-Wide Association Study , Humans , Depression/genetics , Cognition/physiology , Male , Brain/diagnostic imaging , Brain/pathology , Cardiovascular Diseases/genetics , Female , Aged , Middle Aged , Risk Factors , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Longitudinal Studies , White Matter/diagnostic imaging , White Matter/pathology , Multifactorial Inheritance , Aged, 80 and over
10.
Comput Psychiatr ; 8(1): 46-69, 2024.
Article in English | MEDLINE | ID: mdl-38774430

ABSTRACT

The Probabilistic Reward Task (PRT) is widely used to investigate the impact of Major Depressive Disorder (MDD) on reinforcement learning (RL), and recent studies have used it to provide insight into decision-making mechanisms affected by MDD. The current project used PRT data from unmedicated, treatment-seeking adults with MDD to extend these efforts by: (1) providing a more detailed analysis of standard PRT metrics-response bias and discriminability-to better understand how the task is performed; (2) analyzing the data with two computational models and providing psychometric analyses of both; and (3) determining whether response bias, discriminability, or model parameters predicted responses to treatment with placebo or the atypical antidepressant bupropion. Analysis of standard metrics replicated recent work by demonstrating a dependency between response bias and response time (RT), and by showing that reward totals in the PRT are governed by discriminability. Behavior was well-captured by the Hierarchical Drift Diffusion Model (HDDM), which models decision-making processes; the HDDM showed excellent internal consistency and acceptable retest reliability. A separate "belief" model reproduced the evolution of response bias over time better than the HDDM, but its psychometric properties were weaker. Finally, the predictive utility of the PRT was limited by small samples; nevertheless, depressed adults who responded to bupropion showed larger pre-treatment starting point biases in the HDDM than non-responders, indicating greater sensitivity to the PRT's asymmetric reinforcement contingencies. Together, these findings enhance our understanding of reward and decision-making mechanisms that are implicated in MDD and probed by the PRT.

11.
Nicotine Tob Res ; 26(10): 1305-1312, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38624067

ABSTRACT

INTRODUCTION: The neural underpinnings underlying individual differences in nicotine-enhanced reward sensitivity (NERS) and smoking progression are poorly understood. Thus, we investigated whether brain resting-state functional connectivity (rsFC.) during smoking abstinence predicts NERS and smoking progression in young light smokers. We hypothesized that high rsFC between brain areas with high densities of nicotinic receptors (insula, anterior cingulate cortex [ACC], hippocampus, thalamus) and areas involved in reward-seeking (nucleus accumbens [NAcc], prefrontal cortex [PFC]) would predict NERS and smoking progression. AIMS AND METHODS: Young light smokers (N = 64, age 18-24, M = 1.89 cigarettes/day) participated in the study. These individuals smoked between 5 and 35 cigarettes per week and lifetime use never exceeded 35 cigarettes per week. Their rsFC was assessed using functional magnetic resonance imaging after 14 hours of nicotine deprivation. Subjects also completed a probabilistic reward task after smoking a placebo on 1 day and a regular cigarette on another day. RESULTS: The probabilistic-reward-task assessed greater NERS was associated with greater rsFC between the right anterior PFC and right NAcc, but with reduced rsFC between the ACC and left inferior prefrontal gyrus and the insula and ACC. Decreased rsFC within the salience network (ACC and insula) predicted increased smoking progression across 18 months and greater NERS. CONCLUSIONS: These findings provide the first evidence that differences in rsFCs in young light smokers are associated with nicotine-enhanced reward sensitivity and smoking progression. CLINICAL TRIAL REGISTRATION: NCT02129387 (preregistered hypothesis: www.clinicaltrials.gov). IMPLICATIONS: Weaker rsFC within the salience network predicted greater NERS and smoking progression. These findings suggest that salience network rsFC and drug-enhanced reward sensitivity may be useful tools and potential endophenotypes for reward sensitivity and drug-dependence research.


Subject(s)
Magnetic Resonance Imaging , Nicotine , Reward , Adolescent , Female , Humans , Male , Young Adult , Brain/diagnostic imaging , Brain/drug effects , Brain/physiopathology , Brain/physiology , Disease Progression , Executive Function/physiology , Executive Function/drug effects , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Gyrus Cinguli/drug effects , Nicotine/pharmacology , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiopathology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Smoking/psychology , Smoking/physiopathology
12.
Am J Psychiatry ; 181(7): 639-650, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38685857

ABSTRACT

OBJECTIVE: Preclinical work suggests that excess glucocorticoids and reduced cortical γ-aminobutyric acid (GABA) may affect sex-dependent differences in brain regions implicated in stress regulation and depressive phenotypes. The authors sought to address a critical gap in knowledge, namely, how stress circuitry is functionally affected by glucocorticoids and GABA in current or remitted major depressive disorder (MDD). METHODS: Multimodal imaging data were collected from 130 young adults (ages 18-25), of whom 44 had current MDD, 42 had remitted MDD, and 44 were healthy comparison subjects. GABA+ (γ-aminobutyric acid and macromolecules) was assessed using magnetic resonance spectroscopy, and task-related functional MRI data were collected under acute stress and analyzed using data-driven network modeling. RESULTS: Across modalities, trait-related abnormalities emerged. Relative to healthy comparison subjects, both clinical groups were characterized by lower rostral anterior cingulate cortex (rACC) GABA+ and frontoparietal network amplitude but higher amplitude in salience and stress-related networks. For the remitted MDD group, differences from the healthy comparison group emerged in the context of elevated cortisol levels, whereas the MDD group had lower cortisol levels than the healthy comparison group. In the comparison group, frontoparietal and stress-related network connectivity was positively associated with cortisol level (highlighting putative top-down regulation of stress), but the opposite relationship emerged in the MDD and remitted MDD groups. Finally, rACC GABA+ was associated with stress-induced changes in connectivity between overlapping default mode and salience networks. CONCLUSIONS: Lifetime MDD was characterized by reduced rACC GABA+ as well as dysregulated cortisol-related interactions between top-down control (frontoparietal) and threat (task-related) networks. These findings warrant further investigation of the role of GABA in the vulnerability to and treatment of MDD.


Subject(s)
Depressive Disorder, Major , Gyrus Cinguli , Hydrocortisone , Magnetic Resonance Imaging , Multimodal Imaging , Stress, Psychological , gamma-Aminobutyric Acid , Humans , Gyrus Cinguli/physiopathology , Gyrus Cinguli/metabolism , Gyrus Cinguli/diagnostic imaging , Male , Hydrocortisone/metabolism , Female , Adult , Young Adult , gamma-Aminobutyric Acid/metabolism , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/drug therapy , Adolescent , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Stress, Psychological/diagnostic imaging , Magnetic Resonance Spectroscopy , Connectome , Case-Control Studies , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
13.
Cogn Affect Behav Neurosci ; 24(2): 187-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504048

ABSTRACT

Preclinical research is an essential aspect of biomedical science that aids in clarifying the pathophysiology of underlying illness and devising new treatments. This special issues brings together original research and review papers that pertain to the development of novel models and behavioral assays of symptoms of neuropsychiatric disorders, which may help to refine preclinical studies and to improve their translatability to the human condition.


Subject(s)
Disease Models, Animal , Mental Disorders , Animals , Mental Disorders/physiopathology , Humans
14.
Neuropsychopharmacology ; 49(7): 1162-1170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480910

ABSTRACT

Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders (n = 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM to a corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region) of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted anhedonia and impulsivity symptoms for individuals with bipolar disorders. Importantly, the generalizability of cross-sectional models was demonstrated in an external validation sample. Taken together, across DSM mood diagnoses, efficiency and centrality of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM is an innovative modeling approach that may ultimately inform clinical prediction at the individual level.


Subject(s)
Anhedonia , Brain , Connectome , Impulsive Behavior , Magnetic Resonance Imaging , Humans , Anhedonia/physiology , Impulsive Behavior/physiology , Female , Connectome/methods , Male , Adult , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Mania/physiopathology , Mania/diagnostic imaging , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnostic imaging , Middle Aged , Models, Neurological , Cross-Sectional Studies
15.
Article in English | MEDLINE | ID: mdl-38417785

ABSTRACT

BACKGROUND: Neurocognitive factors including aberrant reward learning, blunted GABA (gamma-aminobutyric acid), and potentiated stress sensitivity have been linked to anhedonia, a hallmark depressive symptom, possibly in a sex-dependent manner. However, previous research has not investigated the putative associations among these factors or the extent to which they represent trait- or state-based vulnerabilities for depression. METHODS: Young adults with current major depressive disorder (MDD) (n = 44), remitted MDD (n = 42), and healthy control participants (HCs) (n = 44), stratified by sex assigned at birth, underwent magnetic resonance spectroscopy to assess macromolecular contaminated GABA (GABA+) and then a reward learning task before and after acute stress. We assessed changes in reward learning after stress and associations with GABA+. RESULTS: Results revealed blunted baseline reward learning in participants with remitted MDD versus participants with current MDD and HCs but, surprisingly, no differences between participants with current MDD and HCs. Reward learning was reduced following acute stress regardless of depressive history. GABA+ in the rostral anterior cingulate cortex, but not the dorsolateral prefrontal cortex, was associated with reduced baseline reward learning only in female participants. GABA+ did not predict stress-related changes in reward learning. CONCLUSIONS: To our knowledge, this is the first study to investigate associations among GABA, reward learning, and stress reactivity in current versus past depression. Hypothesized depression-related differences in reward learning did not emerge, precluding claims about state versus trait vulnerabilities. However, our finding that blunted GABA was associated with greater reward learning in female participants provides novel insights into sex-selective associations between the frontal GABAergic inhibitory system and reward processing.


Subject(s)
Depressive Disorder, Major , Reward , Stress, Psychological , gamma-Aminobutyric Acid , Humans , Female , Male , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/metabolism , Young Adult , gamma-Aminobutyric Acid/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Adult , Learning/physiology , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Spectroscopy , Sex Characteristics , Sex Factors , Adolescent
16.
Cogn Affect Behav Neurosci ; 24(4): 617-630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38383913

ABSTRACT

The phenomenon of aesthetic chills-shivers and goosebumps associated with either rewarding or threatening stimuli-offers a unique window into the brain basis of conscious reward because of their universal nature and simultaneous subjective and physical counterparts. Elucidating the neural mechanisms underlying aesthetic chills can reveal fundamental insights about emotion, consciousness, and the embodied mind. What is the precise timing and mechanism of bodily feedback in emotional experience? How are conscious feelings and motivations generated from interoceptive predictions? What is the role of uncertainty and precision signaling in shaping emotions? How does the brain distinguish and balance processing of rewards versus threats? We review neuroimaging evidence and highlight key questions for understanding how bodily sensations shape conscious feelings. This research stands to advance models of brain-body interactions shaping affect and may lead to novel nonpharmacological interventions for disorders of motivation and pleasure.


Subject(s)
Brain , Emotions , Humans , Emotions/physiology , Brain/physiology , Brain/diagnostic imaging , Reward , Esthetics , Interoception/physiology , Sensation/physiology , Consciousness/physiology
17.
Article in English | MEDLINE | ID: mdl-38401881

ABSTRACT

BACKGROUND: Deeper phenotyping may improve our understanding of depression. Because depression is heterogeneous, extracting cognitive signatures associated with severity of depressive symptoms, anhedonia, and affective states is a promising approach. METHODS: Sequential sampling models decomposed behavior from an adaptive approach-avoidance conflict task into computational parameters quantifying latent cognitive signatures. Fifty unselected participants completed clinical scales and the approach-avoidance conflict task by either approaching or avoiding trials offering monetary rewards and electric shocks. RESULTS: Decision dynamics were best captured by a sequential sampling model with linear collapsing boundaries varying by net offer values, and with drift rates varying by trial-specific reward and aversion, reflecting net evidence accumulation toward approach or avoidance. Unlike conventional behavioral measures, these computational parameters revealed distinct associations with self-reported symptoms. Specifically, passive avoidance tendencies, indexed by starting point biases, were associated with greater severity of depressive symptoms (R = 0.34, p = .019) and anhedonia (R = 0.49, p = .001). Depressive symptoms were also associated with slower encoding and response execution, indexed by nondecision time (R = 0.37, p = .011). Higher reward sensitivity for offers with negative net values, indexed by drift rates, was linked to more sadness (R = 0.29, p = .042) and lower positive affect (R = -0.33, p = .022). Conversely, higher aversion sensitivity was associated with more tension (R = 0.33, p = .025). Finally, less cautious response patterns, indexed by boundary separation, were linked to more negative affect (R = -0.40, p = .005). CONCLUSIONS: We demonstrated the utility of multidimensional computational phenotyping, which could be applied to clinical samples to improve characterization and treatment selection.


Subject(s)
Anhedonia , Depression , Reward , Humans , Anhedonia/physiology , Male , Female , Adult , Depression/physiopathology , Young Adult , Neuropsychological Tests , Decision Making/physiology , Computer Simulation , Cognition/physiology , Affect/physiology
18.
Biol Psychiatry ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38395372

ABSTRACT

BACKGROUND: Understanding the neurobiological effects of stress is critical for addressing the etiology of major depressive disorder (MDD). Using a dimensional approach involving individuals with differing degree of MDD risk, we investigated 1) the effects of acute stress on cortico-cortical and subcortical-cortical functional connectivity (FC) and 2) how such effects are related to gene expression and receptor maps. METHODS: Across 115 participants (37 control, 39 remitted MDD, 39 current MDD), we evaluated the effects of stress on FC during the Montreal Imaging Stress Task. Using partial least squares regression, we investigated genes whose expression in the Allen Human Brain Atlas was associated with anatomical patterns of stress-related FC change. Finally, we correlated stress-related FC change maps with opioid and GABAA (gamma-aminobutyric acid A) receptor distribution maps derived from positron emission tomography. RESULTS: Results revealed robust effects of stress on global cortical connectivity, with increased global FC in frontoparietal and attentional networks and decreased global FC in the medial default mode network. Moreover, robust increases emerged in FC of the caudate, putamen, and amygdala with regions from the ventral attention/salience network, frontoparietal network, and motor networks. Such regions showed preferential expression of genes involved in cell-to-cell signaling (OPRM1, OPRK1, SST, GABRA3, GABRA5), similar to previous genetic MDD studies. CONCLUSIONS: Acute stress altered global cortical connectivity and increased striatal connectivity with cortical regions that express genes that have previously been associated with imaging abnormalities in MDD and are rich in µ and κ opioid receptors. These findings point to overlapping circuitry underlying stress response, reward, and MDD.

19.
Article in English | MEDLINE | ID: mdl-38417786

ABSTRACT

BACKGROUND: Neuroimaging studies of major depression have typically been conducted using group-level approaches. However, given interindividual differences in brain systems, there is a need for individualized approaches to brain systems mapping and putative links toward diagnosis, symptoms, and behavior. METHODS: We used an iterative parcellation approach to map individualized brain systems in 328 participants from a multisite, placebo-controlled clinical trial. We hypothesized that participants with depression would show abnormalities in salience, control, default, and affective systems, which would be associated with higher levels of self-reported anhedonia, anxious arousal, and worse cognitive performance. Within hypothesized brain systems, we compared patch sizes (number of vertices) between depressed and healthy control groups. Within depressed groups, abnormal patches were correlated with hypothesized clinical and behavioral measures. RESULTS: Significant group differences emerged in hypothesized patches of 1) the lateral salience system (parietal operculum; t326 = -3.11, p = .002) and 2) the control system (left medial posterior prefrontal cortex region; z = -3.63, p < .001), with significantly smaller patches in these regions in participants with depression than in healthy control participants. Results suggest that participants with depression with significantly smaller patch sizes in the lateral salience system and control system regions experience greater anxious arousal and cognitive deficits. CONCLUSIONS: The findings imply that neural features mapped at the individual level may relate meaningfully to diagnosis, symptoms, and behavior. There is strong clinical relevance in taking an individualized brain systems approach to mapping neural functional connectivity because these associated region patch sizes may help advance our understanding of neural features linked to psychopathology and foster future patient-specific clinical decision making.


Subject(s)
Brain , Depressive Disorder, Major , Magnetic Resonance Imaging , Adult , Female , Humans , Male , Middle Aged , Young Adult , Anhedonia/physiology , Brain/physiopathology , Brain/diagnostic imaging , Brain Mapping , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
20.
Transl Psychiatry ; 14(1): 106, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388454

ABSTRACT

Animal models of depression show that acute stress negatively impacts functioning in neural regions sensitive to reward and punishment, often manifesting as anhedonic behaviors. However, few human studies have probed stress-induced neural activation changes in relation to anhedonia, which is critical for clarifying risk for affective disorders. Participants (N = 85, 12-14 years-old, 53 female), oversampled for risk of depression, were administered clinical assessments and completed an fMRI guessing task during a baseline (no-stress) period to probe neural response to receipt of rewards and losses. After the initial task run of the fMRI guessing task, participants received an acute stressor and then, were re-administered the guessing task. Including baseline, participants provided up to 10 self-report assessments of life stress and symptoms over a 2 year period. Linear mixed-effects models estimated whether change in neural activation (post- vs. pre-acute stressor) moderated the longitudinal associations between life stress and symptoms. Primary analyses indicated that adolescents with stress-related reductions in right ventral striatum response to rewards exhibited stronger longitudinal associations between life stress and anhedonia severity (ß = -0.06, 95%CI[-0.11, -0.02], p = 0.008, pFDR = 0.048). Secondary analyses showed that longitudinal positive associations between life stress and depression severity were moderated by stress-related increases in dorsal striatum response to rewards (left caudate ß = 0.11, 95%CI[0.07,0.17], p < 0.001, pFDR = 0.002; right caudate ß = 0.07, 95%CI[0.02,0.12], p = 0.002, pFDR = 0.003; left putamen ß = 0.09, 95%CI[0.04, 0.14], p < 0.001, pFDR = 0.002; right putamen ß = 0.08, 95%CI[0.03, 0.12], p < 0.001, pFDR = 0.002). Additionally, longitudinal positive associations among life stress and anxiety severity were moderated by stress-related reductions in dorsal anterior cingulate cortex (ß = -0.07, 95%CI[-0.12,.02], p = 0.008, pFDR = 0.012) and right anterior insula (ß = -0.07, 95%CI[-0.12,-0.02], p = 0.002, pFDR = 0.006) response to loss. All results held when adjusting for comorbid symptoms. Results show convergence with animal models, highlighting mechanisms that may facilitate stress-induced anhedonia as well as a separable pathway for the emergence of depressive and anxiety symptoms.


Subject(s)
Anhedonia , Ventral Striatum , Adolescent , Humans , Female , Child , Anhedonia/physiology , Longitudinal Studies , Reward , Gyrus Cinguli , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL