Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38980505

ABSTRACT

PURPOSE: Cancer treatments often become ineffective because of acquired drug resistance. To characterize changes in breast cancer cells accompanying development of resistance to inhibitors of the oncogenic transcription factor, FOXM1, we investigated the suppression of cell death pathways, especially ferroptosis, in FOXM1 inhibitor-resistant cells. We also explored whether ferroptosis activators can synergize with FOXM1 inhibitors and can overcome FOXM1 inhibitor resistance. METHODS: In estrogen receptor-positive and triple-negative breast cancer cells treated with FOXM1 inhibitor NB73 and ferroptosis activators dihydroartemisinin and JKE1674, alone and in combination, we measured suppression of cell viability, motility, and colony formation, and monitored changes in gene and protein pathway expressions and mitochondrial integrity. RESULTS: Growth suppression of breast cancer cells by FOXM1 inhibitors is accompanied by increased cell death and alterations in mitochondrial morphology and metabolic activity. Low doses of FOXM1 inhibitor strongly synergize with ferroptosis inducers to reduce cell viability, migration, colony formation, and expression of proliferation-related genes, and increase intracellular Fe+2 and lipid peroxidation, markers of ferroptosis. Acquired resistance to FOXM1 inhibition is associated with increased expression of cancer stem-cell markers and proteins that repress ferroptosis, enabling cell survival and drug resistance. Notably, resistant cells are still sensitive to growth suppression by low doses of ferroptosis activators, effectively overcoming the acquired resistance. CONCLUSION: Delineating changes in viability and cell death pathways that can overcome drug resistance should be helpful in determining approaches that might best prevent or reverse resistance to therapeutic targeting of FOXM1 and ultimately improve patient clinical outcomes.

2.
Breast Cancer Res Treat ; 198(3): 607-621, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36847915

ABSTRACT

PURPOSE: Few targeted treatment options currently exist for patients with advanced, often recurrent breast cancers, both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer. Forkhead box M1 (FOXM1) is an oncogenic transcription factor that drives all cancer hallmarks in all subtypes of breast cancer. We previously developed small-molecule inhibitors of FOXM1 and to further exploit their potential as anti-proliferative agents, we investigated combining FOXM1 inhibitors with drugs currently used in the treatment of breast and other cancers and assessed the potential for enhanced inhibition of breast cancer. METHODS: FOXM1 inhibitors alone and in combination with other cancer therapy drugs were assessed for their effects on suppression of cell viability and cell cycle progression, induction of apoptosis and caspase 3/7 activity, and changes in related gene expressions. Synergistic, additive, or antagonistic interactions were evaluated using ZIP (zero interaction potency) synergy scores and the Chou-Talalay interaction combination index. RESULTS: The FOXM1 inhibitors displayed synergistic inhibition of proliferation, enhanced G2/M cell cycle arrest, and increased apoptosis and caspase 3/7 activity and associated changes in gene expression when combined with several drugs across different pharmacological classes. We found especially strong enhanced effectiveness of FOXM1 inhibitors in combination with drugs in the proteasome inhibitor class for ER-positive and TNBC cells and with CDK4/6 inhibitors (Palbociclib, Abemaciclib, and Ribociclib) in ER-positive cells. CONCLUSION: The findings suggest that the combination of FOXM1 inhibitors with several other drugs might enable dose reduction in both agents and provide enhanced efficacy in treatment of breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Forkhead Box Protein M1/genetics , Caspase 3/genetics , Neoplasm Recurrence, Local/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL