Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Nanoscale Horiz ; 9(6): 956-967, 2024 May 29.
Article En | MEDLINE | ID: mdl-38742382

Nanoparticles exhibit superior physical and chemical properties, making them highly desirable for various applications. Flame spray pyrolysis (FSP) is a versatile technique for synthesizing size and composition-controlled metal oxide/sulfide nanoparticles through a gas-phase reaction. To understand the fundamental mechanisms governing nanoparticle formation in FSP, simplified single-droplet experiments have proven to unravel the physicochemical mechanisms of liquid metal precursor combustions. This work introduces a novel method using flame emission spectroscopy and high-speed imaging to analyze combustion species and metal release during metalorganic single droplet combustions, with the example of the 2-ethylhexanoci acid (EHA)-tetrahydrothiophene (THT)-mesitylcopper (MiCu) precursor system. The method enables the tracing of precursor components released from droplet into the flame by spatial and temporal resolved emission tracking from combustion species (OH*, CH*, C2*, CS*, CS2*) and atomic spectral lines (Cu I). The tracking of metal emission enables the direct observation of the particle formation route, offering novel insights into the metalorganic precursor combustions. The findings of this work show a direct correlation between micro-explosions and nanoparticle formation through the gas-to-particle route. The release of copper emissions is observed with the micro-explosion event, marking the micro-explosions as the critical mechanism for the metal release and subsequent nanoparticle formation during the combustion process. The results indicate a metalorganic viscous shell formation (THT + MiCu) leading to the micro explosion. The EHA/THT ratio significantly affects the combustion behavior. Lower ratios lead to a gradual copper release before the micro explosion; higher ratios shorten the copper release and delay the micro explosion - the highest ratio results in two distinct burning stages.

2.
Nat Commun ; 14(1): 4356, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468472

The large cytosolic GTPase, dynamin-related protein 1 (Drp1), mediates both physiological and pathological mitochondrial fission. Cell stress triggers Drp1 binding to mitochondrial Fis1 and subsequently, mitochondrial fragmentation, ROS production, metabolic collapse, and cell death. Because Drp1 also mediates physiological fission by binding to mitochondrial Mff, therapeutics that inhibit pathological fission should spare physiological mitochondrial fission. P110, a peptide inhibitor of Drp1-Fis1 interaction, reduces pathology in numerous models of neurodegeneration, ischemia, and sepsis without blocking the physiological functions of Drp1. Since peptides have pharmacokinetic limitations, we set out to identify small molecules that mimic P110's benefit. We map the P110-binding site to a switch I-adjacent grove (SWAG) on Drp1. Screening for SWAG-binding small molecules identifies SC9, which mimics P110's benefits in cells and a mouse model of endotoxemia. We suggest that the SWAG-binding small molecules discovered in this study may reduce the burden of Drp1-mediated pathologies and potentially pathologies associated with other members of the GTPase family.


Dynamins , GTP Phosphohydrolases , Animals , Mice , Allosteric Site , Disease Models, Animal , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism
3.
Adv Mater ; 35(28): e2211104, 2023 Jul.
Article En | MEDLINE | ID: mdl-37029337

The development of a novel reactive spray technology based on the well-known gas-phase metal oxide synthesis route provides innumerable opportunities for the production of non-oxide nanoparticles. Among these materials, metal sulfides are expected to have a high impact, especially in the development of electrochemical and photochemical high-surface-area materials. As a proof-of-principle, MnS, CoS, Cu2 S, ZnS, Ag2 S, In2 S3 , SnS, and Bi2 S3 are synthesized in an O2 -lean and sulfur-rich environment. In addition, the formation of Cu2 S in a single-droplet combustion experiment is reported. The multiscale approach combining flame sprays with single-droplet combustion is expected to pave the way toward a fundamental understanding of the gas-phase formation of metal sulfides in the future. The knowledge acquired can open the possibility for the development of a next-generation gas-phase technology facilitating the scalable synthesis of functional binary/ternary metal sulfides.


Nanoparticles , Oxygen , Temperature , Aerosols , Sulfides
4.
NanoImpact ; 30: 100458, 2023 04.
Article En | MEDLINE | ID: mdl-36858316

The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO2 NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation. Effects were analyzed at organism (phenotypic, survival and reproduction) and gene expression level (transcriptomics, high-throughput 4x44K microarray) to understand the underlying mechanisms. A total of 48 microarrays (20 test conditions) were done plus controls (UV and non-UV). Unique mechanisms induced by TiO2 NPs exposure included the impairment in RNA processing for TiO2_10nm, or deregulated apoptosis for 2%FeTiO2_10nm. Strikingly apparent was the size dependent effects such as induction of reproductive effects via smaller TiO2 NPs (≤12 nm) - embryo interaction, while larger particles (27 nm) caused reproductive effects through different mechanisms. Also, phagocytosis was affected by 12 and 27 nm NPs, but not by ≤11 nm. The organism level study shows the integrated response, i.e. the result after a cascade of events. While uni-cell models offer key mechanistic information, we here deliver a combined biological system level (phenotype and genotype), seldom available, especially for environmental models.


Metal Nanoparticles , Transcriptome , Metal Nanoparticles/adverse effects , Gene Expression Profiling , Titanium/toxicity
5.
J Nanobiotechnology ; 21(1): 87, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36915084

Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.


Cancer Vaccines , Nanoparticles , Neoplasms , Vaccines , Animals , Mice , Humans , Neoplasms/drug therapy , Nanoparticles/chemistry , Immunotherapy/methods , Dendritic Cells , Cancer Vaccines/therapeutic use
6.
Nat Commun ; 14(1): 1733, 2023 03 28.
Article En | MEDLINE | ID: mdl-36977673

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


COVID-19 , Hepatitis C, Chronic , Animals , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors , Mammals/metabolism
7.
Sci Transl Med ; 15(680): eabp9952, 2023 01 25.
Article En | MEDLINE | ID: mdl-36696485

The common aldehyde dehydrogenase 2 (ALDH2) alcohol flushing variant known as ALDH2*2 affects ∼8% of the world's population. Even in heterozygous carriers, this missense variant leads to a severe loss of ALDH2 enzymatic activity and has been linked to an increased risk of coronary artery disease (CAD). Endothelial cell (EC) dysfunction plays a determining role in all stages of CAD pathogenesis, including early-onset CAD. However, the contribution of ALDH2*2 to EC dysfunction and its relation to CAD are not fully understood. In a large genome-wide association study (GWAS) from Biobank Japan, ALDH2*2 was found to be one of the strongest single-nucleotide polymorphisms associated with CAD. Clinical assessment of endothelial function showed that human participants carrying ALDH2*2 exhibited impaired vasodilation after light alcohol drinking. Using human induced pluripotent stem cell-derived ECs (iPSC-ECs) and CRISPR-Cas9-corrected ALDH2*2 iPSC-ECs, we modeled ALDH2*2-induced EC dysfunction in vitro, demonstrating an increase in oxidative stress and inflammatory markers and a decrease in nitric oxide (NO) production and tube formation capacity, which was further exacerbated by ethanol exposure. We subsequently found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) such as empagliflozin mitigated ALDH2*2-associated EC dysfunction. Studies in ALDH2*2 knock-in mice further demonstrated that empagliflozin attenuated ALDH2*2-mediated vascular dysfunction in vivo. Mechanistically, empagliflozin inhibited Na+/H+-exchanger 1 (NHE-1) and activated AKT kinase and endothelial NO synthase (eNOS) pathways to ameliorate ALDH2*2-induced EC dysfunction. Together, our results suggest that ALDH2*2 induces EC dysfunction and that SGLT2i may potentially be used as a preventative measure against CAD for ALDH2*2 carriers.


Coronary Artery Disease , Induced Pluripotent Stem Cells , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Aldehyde Dehydrogenase, Mitochondrial/genetics , Genome-Wide Association Study , Induced Pluripotent Stem Cells/metabolism , Aldehyde Dehydrogenase
8.
Res Sq ; 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35898342

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

9.
Front Immunol ; 13: 899617, 2022.
Article En | MEDLINE | ID: mdl-35720389

COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Rats , Spike Glycoprotein, Coronavirus
10.
Res Sq ; 2022 Jul 21.
Article En | MEDLINE | ID: mdl-34642689

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

11.
Nanoscale ; 13(35): 14666-14678, 2021 Sep 17.
Article En | MEDLINE | ID: mdl-34533558

Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions requires a more systematic approach, including the comparison of effects across many NMs with identified different but related characters/descriptors. Hence, there is an urgent need to provide coherent (eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of NPs characters. These datasets are test benches for developing holistic methodologies with broader applicability. In the present study we assessed the effects of a custom design Fe-doped TiO2 NPs library, using the soil invertebrate Enchytraeus crypticus (Oligochaeta), via a 5-day pulse via aqueous exposure followed by a 21-days recovery period in soil (survival, reproduction assessment). Obviously, when testing TiO2, realistic conditions should include UV exposure. The 11 Fe-TiO2 library contains NPs of size range between 5-27 nm with varying %Fe (enabling the photoactivation of TiO2 at energy wavelengths in the visible-light range). The NPs were each described by 122 descriptors, being a mixture of measured and atomistic model descriptors. The data were explored using single and univariate statistical methods, combined with machine learning and multiscale modelling techniques. An iterative pruning process was adopted for identifying automatically the most significant descriptors. TiO2 NPs toxicity decreased when combined with UV. Notably, the short-term water exposure induced lasting biological responses even after longer-term recovery in clean exposure. The correspondence with Fe-content correlated with the band-gap hence the reduction of UV oxidative stress. The inclusion of both measured and modelled materials data benefitted the explanation of the results, when combined with machine learning.


Metal Nanoparticles , Nanoparticles , Oligochaeta , Animals , Machine Learning , Nanoparticles/toxicity , Titanium/toxicity
12.
Materials (Basel) ; 14(9)2021 May 04.
Article En | MEDLINE | ID: mdl-34064513

The film thickness plays an important role in the performance of materials applicable to different technologies including chemical sensors, catalysis and/or energy materials. The relationship between the surface and volume of the functional layers is key to high performance evaluations. Here we demonstrate the thermophoretic deposition of different thicknesses of the functional layers designed using flame combustion of tin 2-ethylhexanoate dissolved in xylene, and measurement of thickness by scanning electron microscopy and focused ion beam. The parameters such as spray fluid concentration (differing Sn2+ content), substrate-nozzle distance and time of the spray were considered to investigate the layer growth. The results showed ≈ 23, 124 and 161 µm thickness of the SnO2 layer after flame spray of 0.1, 0.5 M and 1.0 M tin 2-EHA-Xylene solutions for 1200 s. While Sn2+ concentration was 0.5 M for all the flame sprays, the substrates placed at 250, 220 and 200 mm from the flame nozzle had layer thicknesses of 113, 116 and 132 µm, respectively. Spray time dependent thickness growth showed a linear increase from 8.5 to 152.1 µm when the substrates were flame sprayed for 30 s to 1200 s using 0.5 M tin 2-EHA-Xylene solutions. Changing the dispersion oxygen flow (3-7 L/min) had almost no effect on layer thickness. Layers fabricated were compared to a model found in literature, which seems to describe the thickness well in the domain of varied parameters. It turned out that primary particle size deposited on the substrate can be tuned without altering the layer thickness and with little effect on porosity. Applications depending on porosity, such as catalysis or gas sensing, can benefit from tuning the layer thickness and primary particle size.

13.
Sci Rep ; 11(1): 13120, 2021 06 23.
Article En | MEDLINE | ID: mdl-34162970

In December 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of pneumonia with severe respiratory distress and outbreaks in Wuhan, China. The rapid and global spread of SARS-CoV-2 resulted in the coronavirus 2019 (COVID-19) pandemic. Earlier during the pandemic, there were limited genetic viral variations. As millions of people became infected, multiple single amino acid substitutions emerged. Many of these substitutions have no consequences. However, some of the new variants show a greater infection rate, more severe disease, and reduced sensitivity to current prophylaxes and treatments. Of particular importance in SARS-CoV-2 transmission are mutations that occur in the Spike (S) protein, the protein on the viral outer envelope that binds to the human angiotensin-converting enzyme receptor (hACE2). Here, we conducted a comprehensive analysis of 441,168 individual virus sequences isolated from humans throughout the world. From the individual sequences, we identified 3540 unique amino acid substitutions in the S protein. Analysis of these different variants in the S protein pinpointed important functional and structural sites in the protein. This information may guide the development of effective vaccines and therapeutics to help arrest the spread of the COVID-19 pandemic.


Genetic Variation , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Furin/metabolism , Glycosylation , Humans , Models, Molecular , Pre-Exposure Prophylaxis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification
14.
ACS Appl Energy Mater ; 4(5): 4428-4443, 2021 May 24.
Article En | MEDLINE | ID: mdl-34060544

The spinel LiMn2O4 (LMO) is a promising cathode material for rechargeable Li-ion batteries due to its excellent properties, including cost effectiveness, eco-friendliness, high energy density, and rate capability. The commercial application of LiMn2O4 is limited by its fast capacity fading during cycling, which lowers the electrochemical performance. In the present work, phase-pure and crystalline LiMn2O4 spinel in the nanoscale were synthesized using single flame spray pyrolysis via screening 16 different precursor-solvent combinations. To overcome the drawback of capacity fading, LiMn2O4 was homogeneously mixed with different percentages of AlPO4 using versatile multiple flame sprays. The mixing was realized by producing AlPO4 and LiMn2O4 aerosol streams in two independent flames placed at 20° to the vertical axis. The structural and morphological analyses by X-ray diffraction indicated the formation of a pure LMO phase and/or AlPO4-mixed LiMn2O4. Electrochemical analysis indicated that LMO nanoparticles of 17.8 nm (d BET) had the best electrochemical performance among the pure LMOs with an initial capacity and a capacity retention of 111.4 mA h g-1 and 88% after 100 cycles, respectively. A further increase in the capacity retention to 93% and an outstanding initial capacity of 116.1 mA h g-1 were acquired for 1% AlPO4.

15.
PLoS One ; 16(5): e0251426, 2021.
Article En | MEDLINE | ID: mdl-34038453

Two SARS-CoV-2 variants of concern showing increased transmissibility relative to the Wuhan virus have recently been identified. Although neither variant appears to cause more severe illness nor increased risk of death, the faster spread of the virus is a major threat. Using computational tools, we found that the new SARS-CoV-2 variants may acquire an increased transmissibility by increasing the propensity of its spike protein to expose the receptor binding domain via proteolysis, perhaps by neutrophil elastase and/or via reduced intramolecular interactions that contribute to the stability of the closed conformation of spike protein. This information leads to the identification of potential treatments to avert the imminent threat of these more transmittable SARS-CoV-2 variants.


Pancreatic Elastase/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , COVID-19/pathology , COVID-19/virology , Humans , Molecular Dynamics Simulation , Mutation , Neutrophils/cytology , Neutrophils/metabolism , Protein Binding , Protein Stability , Protein Structure, Tertiary , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
Infect Genet Evol ; 93: 104897, 2021 Sep.
Article En | MEDLINE | ID: mdl-33971305

A mutation analysis of SARS-CoV-2 genomes collected around the world sorted by sequence, date, geographic location, and species has revealed a large number of variants from the initial reference sequence in Wuhan. This analysis also reveals that humans infected with SARS-CoV-2 have infected mink populations in the Netherlands, Denmark, United States, and Canada. In these animals, a small set of mutations in the spike protein receptor binding domain (RBD), often occurring in specific combinations, has transferred back into humans. The viral genomic mutations in minks observed in the Netherlands and Denmark show the potential for new mutations on the SARS-CoV-2 spike protein RBD to be introduced into humans by zoonotic transfer. Our data suggests that close attention to viral transfer from humans to farm animals and pets will be required to prevent build-up of a viral reservoir for potential future zoonotic transfer.


Mink/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , COVID-19/transmission , COVID-19/veterinary , COVID-19/virology , Canada , Denmark , Humans , Netherlands , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , United States
17.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article En | MEDLINE | ID: mdl-33627406

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Lyases/metabolism , Phycocyanin/biosynthesis , Phycoerythrin/biosynthesis , Pigments, Biological/biosynthesis , Synechococcus/metabolism , Acclimatization , Aquatic Organisms , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genomic Islands , Light , Light-Harvesting Protein Complexes/genetics , Lyases/genetics , Phycobilins/biosynthesis , Phycobilins/genetics , Phycocyanin/genetics , Phycoerythrin/genetics , Phylogeny , Pigments, Biological/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechococcus/classification , Synechococcus/genetics , Synechococcus/radiation effects , Urobilin/analogs & derivatives , Urobilin/biosynthesis , Urobilin/genetics
18.
Chemistry ; 27(21): 6390-6406, 2021 Apr 12.
Article En | MEDLINE | ID: mdl-33326141

Fascination with and the need for evermore increasing efficiency, power, or strength have been the cornerstones for developing new materials and methods for their creation. Higher solar cell conversion efficiencies, increased battery storage power, and lightweight strong materials are some that have been at the forefront of attention for these efforts. Materials created for most applications start as simple chemical compounds. A study of how these chemicals have been used in the past can be used to create new materials and new methods of production. Herein, a class of materials that are valuable in a multitude of applications, metal sulfide nanoparticles, are examined, along with how they are being produced and how new methods can be established that will help to standardize and increase production capabilities. Precursor-solvent combinations that can be used to create metal sulfide nanoparticles in the gas phase are also explored.

19.
Energy Fuels ; 34(11): 13209-13224, 2020 Nov 19.
Article En | MEDLINE | ID: mdl-33343081

Flame spray pyrolysis of precursor-solvent combinations with high enthalpy density allows the design of functional nanoscale materials. Within the last two decades, flame spray pyrolysis was utilized to produce more than 500 metal oxide particulate materials for R&D and commercial applications. In this short review, the particle formation mechanism is described based on the micro-explosions observed in single droplet experiments for various precursor-solvent combinations. While layer fabrication is a key to successful industrial applications toward gas sensors, catalysis, and energy storage, the state-of-the-art technology of innovative in situ thermophoretic particle production and deposition technology is described. In addition, noble metal stabilized oxide matrices with tight chemical contact catalyze surface reactions for enhanced catalytic performance. The metal-support interaction that is vital for redox catalytic performance for various surface reactions is presented.

20.
Combust Flame ; 215: 389-400, 2020 May.
Article En | MEDLINE | ID: mdl-32903291

Tin dioxide (SnO2) nanoparticles synthesized via flame spray pyrolysis (FSP) have promising applications for gas sensors. The formation of SnO2 nanoparticles in the gas-phase has been investigated using single droplet combustion and FSP. Precursor solutions of Tin (II) 2-ethylhexanoate dissolved in Xylene with varying Sn concentrations were selected as the precursor-solvent system. The selected precursor-solvent system has its stability and ability to synthesize homogeneous nanoparticles, compared to metal nitrate based precursor solutions. The precursor-solvent system was studied using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The SnO2 nanoparticles were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). Droplet surface micro-explosions were observed during the single droplet combustion of the precursor solutions. It is because of the heterogeneous vapor-phase nucleation, which is beneath the liquid droplet surface and caused by precursor thermal decomposition. The results show that the size of nanoparticles obtained both from FSP and single droplet combustion increases with increasing metal-precursor concentration. The TEM images of the particles from such droplet combustion reveal two types of nanoparticles with different sizes and morphologies. The current work provides fundamental understanding of precursor decomposition and particle formation during single droplet combustion, which help in-depth understanding of the flame spray pyrolysis.

...