Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(17)2023 08 31.
Article in English | MEDLINE | ID: mdl-37681920

ABSTRACT

This study investigates the feasibility of establishing urine-derived tumor organoids from bladder cancer (BC) patients as an alternative to tissue-derived organoids. BC is one of the most common cancers worldwide and current diagnostic methods involve invasive procedures. Here, we investigated the potential of using urine samples, which contain exfoliated tumor cells, to generate urine-derived BC organoids (uBCOs). Urine samples from 29 BC patients were collected and cells were isolated and cultured in a three-dimensional matrix. The establishment and primary expansion of uBCOs were successful in 83% of the specimens investigated. The culturing efficiency of uBCOs was comparable to cancer tissue-derived organoids. Immunohistochemistry and immunofluorescence to characterize the uBCOs exhibited similar expressions of BC markers compared to the parental tumor. These findings suggest that urine-derived BC organoids hold promise as a non-invasive tool for studying BC and evaluating therapeutic responses. This approach could potentially minimize the need for invasive procedures and provide a platform for personalized drug screening. Further research in this area may lead to improved diagnostic and treatment strategies for BC patients.


Subject(s)
Body Fluids , Urinary Bladder Neoplasms , Humans , Organoids , Drug Evaluation, Preclinical
2.
Cells ; 12(16)2023 08 20.
Article in English | MEDLINE | ID: mdl-37626918

ABSTRACT

Organoids are three-dimensional constructs generated by placing cells in scaffolds to facilitate the growth of cultures with cell-cell and cell-matrix interactions close to the in vivo situation. Organoids may contain different types of cells, including cancer cells, progenitor cells, or differentiated cells. As distinct culture conditions have significant effects on cell metabolism, we explored the expansion of cells and expression of marker genes in bladder cancer cells expanded in two different common scaffolds. The cells were seeded in basement membrane extract (BME; s.c., Matrigel®) or in a cellulose-derived hydrogel (GrowDex®, GD) and cultured. The size of organoids and expression of marker genes were studied. We discovered that BME facilitated the growth of significantly larger organoids of cancer cell line RT112 (p < 0.05), cells from a solid tumor (p < 0.001), and a voiding urine sample (p < 0.001). Expression of proliferation marker Ki76, transcription factor TP63, cytokeratin CK20, and cell surface marker CD24 clearly differed in these different tumor cells upon expansion in BME when compared to cells in GD. We conclude that the choice of scaffold utilized for the generation of organoids has an impact not only on cell growth and organoid size but also on protein expression. The disadvantages of batch-to-batch-variations of BME must be balanced with the phenotypic bias observed with GD scaffolds when standardizing organoid cultures for clinical diagnoses.


Subject(s)
Body Fluids , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder , Epithelial Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...