Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Food Res Int ; 183: 114189, 2024 May.
Article in English | MEDLINE | ID: mdl-38760128

ABSTRACT

Complex coacervation can be used for controlled delivery of bioactive compounds (i.e., flaxseed oil and quercetin). This study investigated the co-encapsulation of flaxseed oil and quercetin by complex coacervation using soluble pea protein (SPP) and gum arabic (GA) as shell materials, followed by innovative electrostatic spray drying (ES). The dried system was analyzed through encapsulation efficiency (EE) and yield (EY), morphological and physicochemical properties, and stability for 60 days. Small droplet size emulsions were produced by GA (in the first step of complex coacervation) due to its greater emulsifying activity than SPP. Oil EY and EE, moisture, and water activity in dried compositions ranged from 75.7 to 75.6, 76.0-73.4 %, 3.4-4.1 %, and 0.1-0.2, respectively. Spherical microcapsules were created with small and aggregated particle size but stable for 60 days. An amount of 8 % of quercetin remained in the dried coacervates after 60 days, with low hydroperoxide production. In summary, when GA is used as the emulsifier and SPP as the second biopolymer in the coacervation process, suitable coacervates for food applications are obtained, with ES being a novel alternative to obtain coacervates in powder, with improved stability for encapsulated compounds. As a result, this study helps provide a new delivery system option and sheds light on how the characteristics of biopolymers and the drying process affect coacervate formation.


Subject(s)
Gum Arabic , Linseed Oil , Particle Size , Quercetin , Spray Drying , Static Electricity , Gum Arabic/chemistry , Quercetin/chemistry , Linseed Oil/chemistry , Capsules , Emulsions/chemistry , Desiccation/methods , Pea Proteins/chemistry , Emulsifying Agents/chemistry
2.
Food Res Int ; 187: 114307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763624

ABSTRACT

Flaxseed oil coacervates were produced by complex coacervation using soluble pea protein and gum arabic as shell materials, followed by either spray or electrostatic spray drying and their incorporation to yoghurt. Three yoghurt formulations were prepared: yoghurt with spray-dried microcapsules (Y-SD); with electrospray-dried microcapsules (Y-ES); with the encapsulation ingredients added in free form (Y). The standardised semi-dynamicin vitrodigestion method (INFOGEST) was employed to study the food digestion. The structure was analysed by confocal laser scanning microscopy and particle size distribution. Protein and lipid digestion were monitored by cumulated protein/free NH2 release and cumulated free fatty acids release, respectively. Stable microcapsules were observed during gastric digestion, but there was no significant difference in protein release/hydrolysis among samples until 55 min of gastric digestion. Formulation Y showed less protein release after 74 min (40.46 %) due to the free SPP being available and positively charged at pH 2-4, resulting in interactions with other constituents of the yoghurt, which delayed its release/hydrolysis. The total release of protein and free NH2 by the end of intestinal digestions ranged between 46.56-61.15 % and 0.83-1.57 µmol/g protein, respectively. A higher release of free fatty acids from formulation Y occurred at the end of intestinal digestion, implying that coacervates promoted the delayed release of encapsulated oil. In summary, incorporating protein-polysaccharides-based coacervates in yoghurt enabled the delay of the digestion of encapsulated lipids but accelerated the digestion of protein, suggesting a promising approach for various food applications.


Subject(s)
Digestion , Gum Arabic , Linseed Oil , Particle Size , Pea Proteins , Yogurt , Yogurt/analysis , Pea Proteins/chemistry , Linseed Oil/chemistry , Gum Arabic/chemistry , Drug Compounding , Capsules , Lipid Metabolism , Spray Drying
3.
Food Funct ; 13(21): 10870-10881, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36239179

ABSTRACT

Encapsulation of food and feed ingredients is commonly applied to avoid the loss of functionality of bioactive food ingredients. Components that are encapsulated are usually sensitive to light, pH, oxygen or highly volatile. Also, encapsulation is also applied for ingredients that might influence taste. Many polymers from natural sources have been tested for encapsulation of foods. In the past few years, pectins have been proposed as emerging broadly applicable encapsulation materials. The reasons are that pectins are versatile and inexpensive, can be tailored to meet specific demands and provide health benefits. Emerging new insight into the chemical structure and related health benefits of pectins opens new avenues to use pectins in food and feed. To provide insight into their application potential, we review the current knowledge on the structural features of different pectins, their production and tailoring process for use in microencapsulation and gelation, and the impact of the pectin structure on health benefits and release properties in the gut, as well as processing technologies for pectin-based encapsulation systems with tailor-made functionalities. This is reviewed in view of application of pectins for microencapsulation of different sensitive food components. Although some critical factors such as tuning of controlled release of cargo in the intestine and the impact of the pectin production process on the molecular structure of pectin still need more study, current insight is that pectins provide many advantages for encapsulation of bioactive food and feed ingredients and are cost-effective.


Subject(s)
Food , Pectins , Pectins/chemistry , Delayed-Action Preparations , Molecular Structure
4.
Sci Rep ; 12(1): 4681, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304495

ABSTRACT

A bioartificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes therapy. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Pancreas, Artificial , Diabetes Mellitus, Type 1/therapy , Humans , Hypoxia , Islets of Langerhans/physiology , Islets of Langerhans Transplantation/methods , Pancreas/physiology
5.
J Microencapsul ; 38(7-8): 507-521, 2021.
Article in English | MEDLINE | ID: mdl-34543150

ABSTRACT

AIM: This study aimed to utilise and optimise the millifluidic and dripping encapsulation technique to develop and characterise the oil-core capsules. METHODS: Sodium alginate with Tween-20 (continuous phase) and sunflower oil (dispersed phase) were used in millifluidic system. After determining the surface and interfacial tensions and flow behaviour parameters, flow rates of phases and concentrations of alginate and Tween were optimised by the Taguchi method. The flow regime of droplets was also evaluated. Optimised millicapsules were characterised concerning morphology, dimension, encapsulation efficiency, SEM, FTIR and, DSC results. RESULTS: Dripping flow regime during droplet formation was observed. Reducing the interfacial tension between the continuous and dispersed phases resulted in about a 10.18% reduction in diameter. Optimised millicapsules depicted spherical shape (0.03 ± 0.01) with 3.95 ± 0.05 mm size and 97.5 ± 0.2% encapsulation efficiency. The FTIR and DSC results confirmed the entrapment of oil. CONCLUSION: Millifluidic and dripping method effectively encapsulated sunflower oil in core-shell capsules.


Subject(s)
Alginates , Capsules , Glucuronic Acid , Hexuronic Acids
6.
J Biomater Appl ; 36(4): 638-647, 2021 10.
Article in English | MEDLINE | ID: mdl-33541171

ABSTRACT

Cell-encapsulation is used for preventing therapeutic cells from being rejected by the host. The technology to encapsulate cells in immunoprotective biomaterials, such as alginate, commonly involves application of an electrostatic droplet generator for reproducible manufacturing droplets of similar size and with similar surface properties. As many factors influencing droplet formation are still unknown, we investigated the impact of several parameters and fitted them to equations to make procedures more reproducible and allow optimal control of capsule size and properties. We demonstrate that droplet size is dependent on an interplay between the critical electric potential (Uc,), the needle size, and the distance between the needle and the gelation bath, and that it can be predicted with the equations proposed. The droplet formation was meticulously studied and followed by a high-speed camera. The X-ray photoelectron analysis demonstrated optimal gelation and substitution of sodium with calcium on alginate surfaces while the atomic force microscopy analysis demonstrated a low but considerable variation in surface roughness and low surface stiffness. Our study shows the importance of documenting critical parameters to guarantee reproducible manufacturing of beads with constant and adequate size and preventing batch-to-batch variations.


Subject(s)
Biocompatible Materials/chemistry , Capsules/chemistry , Static Electricity , Alginates/chemistry , Gels/chemistry , Particle Size , Photoelectron Spectroscopy/methods , Surface Properties , Surface Tension , Viscosity
7.
J Microencapsul ; 36(1): 72-82, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30916612

ABSTRACT

Microparticles made from hydrogenated sunflower oil without essential oil and with different essential oil concentrations (75-300 g/kg; g of essential oil per kg of microparticles) were stored for 1 or 2 months at 25 or 37 °C. Before and after storage the essential oil concentration, flowability, optical appearance, melting behaviour and crystalline structure of the microparticles were investigated. Essential oil recovery, melting behaviour and crystalline structure were identical for the essential oil containing microparticles and were not affected during storage. The surface structure of the microparticles varied with their essential oil concentration. While the particles containing 75 g/kg essential oil were covered by erect fat crystals, those with 225 g/kg and higher were mostly smooth with some round shaped dumps. However, the surface of all essential oil containing microparticle batches had reached their final stage after production already and did not change during storage. Microparticles without essential oil presented two melting peaks; all microparticle batches with essential oil had one peak. Peaks in the X-ray scattering powder diffraction signal of the essential oil-free microparticles after production can be associated with the α-form of the hydrogenated vegetable oil. During storage, a conversion of the α-form to the stable ß-form was observed. Microscopy showed that these microparticles also developed strong fat crystals throughout storage. The triglycerides in microparticles with essential oil seem to directly take on the stable ß-form. The formation of robust microparticle agglomerates during storage was prevalently observed for the fat crystal forming product batches, meaning the products without or with low essential oil concentration.


Subject(s)
Helianthus/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Crystallization , Hydrogenation , Particle Size , Surface Properties , Transition Temperature , Triglycerides/chemistry
8.
Biotechnol Bioeng ; 116(5): 1176-1189, 2019 05.
Article in English | MEDLINE | ID: mdl-30593660

ABSTRACT

The bioartificial pancreas encapsulating pancreatic islets in immunoprotective hydrogel is a promising therapy for Type 1 diabetes. As pancreatic islets are highly metabolically active and exquisitely sensitive to hypoxia, maintaining O2 supply after transplantation remains a major challenge. In this study, we address the O2 limitation by combining silicone-encapsulated CaO2 (silicone-CaO2 ) to generate O2 with an extracellular hemoglobin O2 -carrier coencapsulated with islets. We showed that the hemoglobin improved by 37% the O2 -diffusivity through an alginate hydrogel and displayed antioxidant properties neutralizing deleterious reactive O2 species produced by silicone-CaO2 . While the hemoglobin alone failed to maintain alginate macroencapsulated neonate pig islets under hypoxia, silicone-CaO2 alone or combined to the hemoglobin restored islet viability and insulin secretion and prevented proinflammatory metabolism (PTGS2 expression). Interestingly, the combination took the advantages of the two individual strategies, improved neonate pig islet viability and insulin secretion in normoxia, and VEGF secretion and PDK1 normalization in hypoxia. Moreover, we confirmed the specific benefits of the combination compared to silicone-CaO2 alone on murine pseudo-islet viability in normoxia and hypoxia. For the first time, our results show the interest of combining an O2 provider with hemoglobin as an effective strategy to overcome O2 limitations in tissue engineering.


Subject(s)
Alginates/chemistry , Hemoglobins/pharmacology , Hydrogels/chemistry , Oxygen/pharmacology , Pancreas, Artificial , Animals , Calcium Compounds/chemistry , Mice , Oxides/chemistry , Silicones/chemistry , Swine
9.
J Microencapsul ; 35(6): 513-521, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30160590

ABSTRACT

Microparticles with different essential oil concentrations 0, 75, 150, 225 and 300 gkg-1, (g of essential oil per kg of microparticles), were produced by dispersing the essential oils within a hydrogenated vegetable fat matrix and forming spherical solid particles by spray-chilling. Size distribution, flowability, surface structure, essential oil recovery, melting properties and crystallinity of the microparticles were determined. With over 225 gkg-1 essential oil the microparticle surface became stickier, their flowability was reduced and the size distribution broadened. Gas chromatography showed that the essential oil recovery was always above 85% v/v. The surface structure of the microparticles was strongly affected by the essential oil concentration being smooth (225 gkg-1), comprising round-shaped dumps (300 gkg-1) or showing fat blooming (0, 75, 150 gkg-1). With essential oil, the formation of the ß-polymorphic form of the triglycerides was supported leading to changes in the melting behaviour and the crystalline structure.


Subject(s)
Nanoparticles , Oils, Volatile/chemistry , Crystallization , Drug Compounding , Hydrogenation , Particle Size , Powders , Surface Properties , X-Ray Diffraction
10.
J Microencapsul ; 34(8): 754-771, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29161939

ABSTRACT

Oils are used in agriculture, nutrition, food and cosmetics; however, these substances are oxidisable and may readily lose their properties. To reduce their degradation or to mask certain undesirable aspects, one strategy consists in encapsulating the oil in inert structures (capsules). The capsules are classified according to the morphology, the number of cores and size, can be produced by several techniques: jet-cutting, vibrating jet, spray-drying, dispersion and milli-microfluidic. Among the polymers used as a membrane in the capsules, alginates are used in oil encapsulation because of their high gelling capacity, biocompatibility and low toxicity. In the presence of calcium ions, the alginate macromolecules crosslink to form a three-dimensional network called hydrogel. The oil encapsulation using alginate as encapsulating material can be carried out using technologies based on the external, internal or inverse gelation mechanisms. These capsules can found applications in areas as cosmetics, textile, foods and veterinary, for example.


Subject(s)
Alginates/chemistry , Drug Compounding/methods , Emulsions/chemistry , Oils/administration & dosage , Capsules/chemistry , Drug Compounding/instrumentation , Equipment Design , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemistry , Lab-On-A-Chip Devices , Oils/chemistry , Oxidation-Reduction , Particle Size
11.
J Microencapsul ; 34(6): 522-534, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28792267

ABSTRACT

In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.


Subject(s)
Alginates/chemistry , Capsules , Emulsions/chemistry , Technology, Pharmaceutical , Drug Liberation , Gels , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Oils
12.
J Microencapsul ; 34(1): 82-90, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28097931

ABSTRACT

The production of capsules by inverse gelation consists of adding dropwise oil containing calcium dispersion into an alginate bath. A dripping technique to produce capsules from oil-in-water (O/W) emulsions was proposed by Abang. However, little is known about the oil encapsulation using water-in-oil (W/O) emulsions. This work aims to develop a new method of W/O emulsions encapsulation by inverse gelation. The success of the W/O emulsion encapsulation is due to three factors: 1) use of an emulsion with moderate stability (50 min); 2) production of an emulsion with at least 90 g/L of CaCl2 and 3) addition of ethanol (20% v/v) into the alginate bath. Both wet and dry capsules were obtained with a spherical shape with diameters of 7 and 3.6 mm, respectively. All volume of oil was encapsulated and the oil loading in the wet and dry capsules was of 23 and 68% v/v, respectively.


Subject(s)
Alginates/chemistry , Drug Compounding/methods , Emulsions/chemistry , Gels/chemistry , Oils/chemistry , Surface-Active Agents/chemistry , Capsules/chemistry , Drug Compounding/instrumentation , Equipment Design , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Water/chemistry
13.
Eng Life Sci ; 17(6): 613-619, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32624806

ABSTRACT

SilCoat-biocatalysts are immobilized enzyme preparations with an outstanding robustness against leaching and mechanical stress and therefore promising tools for technical synthesis. They consist of a composite material made from a solid enzyme carrier and silicone. In this study, a method has been found to enable provision of these catalysts in large scale. It makes use of easily scalable fluidized-bed technology and, in contrast to the original method, works in almost complete absence of organic solvent. Thus, it is both a fast and safe method. When the Pt-catalyst required for silicone formation is cast on the solid enzyme carrier before coating, resulting composites resemble the original preparations in morphology, catalytic activity, and stability against leaching and mechanical forces. Only the maximum total content of silicone in the composites lies about 10% w/w lower resulting in an overall leaching stability below the theoretical maximum. When the Pt-catalyst is mixed with cooled siloxane solution before coating, surficial coating of the enzyme carriers is achieved, which provides maximum leaching stability at very low silicone consumption. Thus, the technology offers the possibility to produce both composite and for the first time also core-shell silCoat-particles, and optimize leaching stability over mechanical strength according to process requirements.

14.
Food Res Int ; 89(Pt 1): 582-590, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28460954

ABSTRACT

Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and aw ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells.

15.
Trends Pharmacol Sci ; 36(8): 537-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26067102

ABSTRACT

Treating many chronic diseases will require a tight, minute-to-minute regulation of therapeutic molecules that is currently not achievable with most pharmaceutical therapies. For these diseases, implantable living cellular systems may be able to provide unlimited drug delivery, enabling seamless matching of treatment duration with disease longevity. Cell encapsulation is an advanced technology that achieves this goal and represents a viable therapeutic option. The advanced state of the field has allowed researchers to inch forward into therapeutic domains previously untouchable because of the myriad disparate fields that intersect biomaterials and cells. Here, we discuss the next generation of clinical trials and potential approaches, 'smart' and responsive encapsulation systems, sophisticated and multifunctional devices, and novel imaging tools, together with the future challenges in the field.


Subject(s)
Capsules/chemistry , Cell Transplantation/methods , Alginates/chemistry , Allografts/transplantation , Animals , Capsules/adverse effects , Heterografts/transplantation , Humans
16.
J Microencapsul ; 32(1): 86-95, 2015.
Article in English | MEDLINE | ID: mdl-25413437

ABSTRACT

A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 µm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.


Subject(s)
Alginates/chemistry , Calcium Chloride/chemistry , Membranes, Artificial , Oils/chemistry , Capsules/chemistry , Emulsions/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Particle Size
17.
J Microencapsul ; 32(1): 1-15, 2015.
Article in English | MEDLINE | ID: mdl-25265057

ABSTRACT

Interfacial polymerisation was mainly developed toward the end of the 1960s, leading to applications in microcapsule production by the mid-1970s. The process consists in the dispersion of one phase containing a reactive monomer, into a second immiscible phase to which is added a second monomer. Both monomers react at the droplet surface (interface), forming a polymeric membrane. Over the last 50 years, many studies have been reported, but very few have provided a comprehensive review of this technology. This contribution reviews microcapsule production by interfacial polymerisation from the chemical, physico-chemical and physical perspectives, providing a tool for understanding and mastering this production technology, but also providing guidance toward improvements for future process design.


Subject(s)
Capsules/chemical synthesis , Membranes, Artificial , Polymers/chemical synthesis , Animals , Capsules/chemistry , Capsules/history , History, 20th Century , History, 21st Century , Humans , Polymers/chemistry , Polymers/history
19.
Adv Drug Deliv Rev ; 67-68: 15-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24270009

ABSTRACT

In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.


Subject(s)
Cell Transplantation , Polymers/chemistry , Alginates/chemistry , Animals , Cellulose/chemistry , Chitosan/chemistry , Collagen/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Sepharose/chemistry
20.
Adv Healthc Mater ; 1(1): 27-34, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-23184685

ABSTRACT

Engineering of functional tissues is a fascinating and fertile arena of research and development. This flourishing enterprise weaves together many areas of research to tackle the most complex question faced to date, namely how to design and reconstruct a synthetic three-dimensional fully functional tissue on demand. At present our healthcare is under threat by several social and economical issues together with those of a more scientific and clinical nature. One such issue arises from our increasing life expectancy, resulting in an ageing society. This steeply growing ageing society requires functional organotypic tissues on demand for repair, replacement, and rejuvenation (R(3) ). Several approaches are pioneered and developed to assist conventional tissue/organ transplantation. In this Progress Report, "non-contact jet-based" approaches for engineering functional tissues are introduced and bio-electrosprays and cell electrospinning, i.e., biotechniques that have demonstrated as being benign for directly handling living cells and whole organisms, are highlighted. These biotechniques possess the ability to directly handle heterogeneous cell populations as suspensions with a biopolymer and/or other micro/nanomaterials for directly forming three-dimensional functional living reconstructs. These discoveries and developments have provided a promising biotechnology platform with far-reaching ramifications for a wide range of applications in basic biological laboratories to their utility in the clinic.


Subject(s)
Biomedical Research/trends , Cell Biology/trends , Cell Culture Techniques/trends , Electrochemistry/methods , Micromanipulation/trends , Tissue Engineering/trends , Tissue Scaffolds/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...