Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Brain ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045667

ABSTRACT

The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side-effects, highlighting the importance of adjusted treatment considerations. Magnetic resonance MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immuno-pathological and MRI aspects of ageing in the central nervous system in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms, and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics, and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.

2.
Article in English | MEDLINE | ID: mdl-38997124

ABSTRACT

BACKGROUND AND PURPOSE: Alterations of the Basilar Artery (BA) anatomy have been suggested as a possible Magnetic Resonance Angiography (MRA) feature of Fabry Disease (FD). Nonetheless, no information about their clinical or pathophysiological correlates is available, limiting our comprehension of the real impact of vessel remodeling in FD. MATERIALS AND METHODS: Brain MRIs of 53 FD subjects (40.7±12.4 years, M/F=23/30) were collected in this single center study. Mean BA diameter and its Tortuosity Index (TI) were calculated on MRA. Possible correlations between these metrics and clinical, laboratory and advanced imaging variables of the posterior circulation were tested. In a subgroup of 20 subjects, a two-year clinical and imaging follow-up was available, with possible longitudinal changes of these metrics and their ability in predicting clinical scores that were also probed. RESULTS: No significant association was found between MRA metrics and any clinical, laboratory or advanced imaging variable (ρ values ranging from -0.006 to 0.32). At the follow-up examination, no changes were observed over time for mean BA diameter (p = 0.84) and TI (p = 0.70). Finally, baseline MRA variables failed to predict the clinical status of FD patients at follow-up (p=0.42 and 0.66, respectively). CONCLUSIONS: Alterations of BA in FD lack of any significant association with clinical, laboratory or advanced imaging findings collected in this study. Furthermore, this lack of correlation seems constant over time, suggesting their stability over time. Taken together, all these results suggest that the role of BA dolichoectasia in FD should be reconsidered. ABBREVIATIONS: CNS = Central Nervous System; FASTEX = FAbry STabilization indEX; FD = Fabry Disease; Gb3 = Globotriaosylceramide; LysoGb3 = globotriaosylsphingosine; MSSI = Mainz Severity Score Index.

3.
Article in English | MEDLINE | ID: mdl-39078773

ABSTRACT

OBJECTIVE: We investigated the effects of adding regions to current dissemination in space (DIS) criteria for multiple sclerosis (MS). METHODS: Participants underwent brain, optic nerve, and spinal cord MRI. Baseline DIS was assessed by 2017 McDonald criteria and versions including optic nerve, temporal lobe, or corpus callosum as a fifth region (requiring 2/5), a version with all regions (requiring 3/7) and optic nerve variations requiring 3/5 and 4/5 regions. Performance was evaluated against MS diagnosis (2017 McDonald criteria) during follow-up. RESULTS: Eighty-four participants were recruited (53F, 32.8 ± 7.1 years). 2017 McDonald DIS criteria were 87% sensitive (95% CI: 76-94), 73% specific (50-89), and 83% accurate (74-91) in identifying MS. Modified criteria with optic nerve improved sensitivity to 98% (91-100), with specificity 33% (13-59) and accuracy 84% (74-91). Criteria including temporal lobe showed sensitivity 94% (84-98), specificity 50% (28-72), and accuracy 82% (72-90); criteria including corpus callosum showed sensitivity 90% (80-96), specificity 68% (45-86), and accuracy 85% (75-91). Criteria adding all three regions (3/7 required) had sensitivity 95% (87-99), specificity 55% (32-76), and accuracy 85% (75-91). When requiring 3/5 regions (optic nerve as the fifth), sensitivity was 82% (70-91), specificity 77% (55-92), and accuracy 81% (71-89); with 4/5 regions, sensitivity was 56% (43-69), specificity 95% (77-100), and accuracy 67% (56-77). INTERPRETATION: Optic nerve inclusion increased sensitivity while lowering specificity. Increasing required regions in optic nerve criteria increased specificity and decreased sensitivity. Results suggest considering the optic nerve for DIS. An option of 3/5 or 4/5 regions preserved specificity, and criteria adding all three regions had highest accuracy.

4.
Neuroimaging Clin N Am ; 34(3): 375-384, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942522

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of the central nervous system, commonly featuring disability and cognitive impairment. The pathologic hallmark of MS lies in demyelination and hence impaired structural and functional neuronal pathways. Recent studies have shown that MS shows extensive structural disconnection of key network hub areas like the thalamus, combined with a functional network reorganization that can mostly be related to poorer clinical functioning. As MS can, therefore, be considered a network disorder, this review outlines recent innovations in the field of network neuroscience in MS.


Subject(s)
Brain , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Magnetic Resonance Imaging/methods , Neuroimaging/methods
5.
Neurology ; 103(1): e209321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870448

ABSTRACT

BACKGROUND AND OBJECTIVES: To test the performance of the 2023 myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) criteria in adults and children with inflammatory demyelinating conditions who were tested for MOG antibodies (Abs). METHODS: This was a retrospective study of patients tested for MOG-Abs from 2018 to 2022 in 2 specialist hospitals. The inclusion criteria comprised ≥1 attendance in an adult or pediatric demyelinating disease clinic and complete clinical and MRI records. The final clinical diagnosis of MOGAD, made by the treating neurologist, was taken as the benchmark against which the new criteria were tested. The international MOGAD diagnostic criteria were applied retrospectively; they stipulate at least 1 clinical or MRI supporting feature for MOGAD diagnosis in positive fixed MOG cell-based assay without a titer. The performance MOG-Ab testing alone for MOGAD diagnosis was also assessed and compared with that of MOGAD criteria using the McNemar test. RESULTS: Of the 1,879 patients tested for MOG-Abs, 539 (135 pediatric and 404 adults) met the inclusion criteria. A clinical diagnosis of MOGAD was made in 86/539 (16%) patients (37 adults, 49 children), with a median follow-up of 3.6 years. The MOGAD diagnostic criteria had sensitivity of 96.5% (adults 91.9%, children 100%), specificity of 98.9% (adults 98.8%, children 98.9%), positive predictive value of 94.3% (adults 89.4%, children 98%), negative predictive value of 99.3% (adults 99.2%, children 100%), and accuracy of 98.5% (adults 98.3%, children 99.2%). When compared with MOG-Ab testing alone, a difference was seen only in adults: a significantly higher specificity (98.9% vs 95.6%, p = 0.0005) and nonstatistically significant lower sensitivity (91.9% vs 100%, p = 0.08). DISCUSSION: The international MOGAD diagnostic criteria exhibit high performance in selected patients with inflammatory demyelinating diseases (who had a high pretest probability of having MOGAD) compared with best clinical judgment; their performance was better in children than in adults. In adults, the MOGAD criteria led to an improvement in specificity and positive predictive value when compared with MOG-Ab testing alone, suggesting that the requirement of at least 1 clinical or MRI supporting feature is important. Future work should address the generalizability of the diagnostic criteria to cohorts of greater clinical diversity seen within neurologic settings.


Subject(s)
Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Humans , Myelin-Oligodendrocyte Glycoprotein/immunology , Child , Adult , Male , Female , Retrospective Studies , Adolescent , Autoantibodies/blood , Child, Preschool , Young Adult , Middle Aged , Magnetic Resonance Imaging , Infant , Aged , Cohort Studies , Sensitivity and Specificity
6.
Ann Clin Transl Neurol ; 11(6): 1541-1556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757392

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Diffusion Tensor Imaging , White Matter , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Male , White Matter/diagnostic imaging , White Matter/pathology , Aged , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Prospective Studies
7.
Neuroradiology ; 66(9): 1593-1601, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38771548

ABSTRACT

PURPOSE: How to measure brain globotriaosylceramide (Gb3) accumulation in Fabry Disease (FD) patients in-vivo is still an open challenge. The objective of this study is to provide a quantitative, non-invasive demonstration of this phenomenon using quantitative MRI (qMRI). METHODS: In this retrospective, monocentric cross-sectional study conducted from November 2015 to July 2018, FD patients and healthy controls (HC) underwent an MRI scan with a relaxometry protocol to compute longitudinal relaxation rate (R1) maps to evaluate gray (GM) and white matter (WM) lipid accumulation. In a subgroup of 22 FD patients, clinical (FAbry STabilization indEX -FASTEX- score) and biochemical (residual α-galactosidase activity) variables were correlated with MRI data. Quantitative maps were analyzed at both global ("bulk" analysis) and regional ("voxel-wise" analysis) levels. RESULTS: Data were obtained from 42 FD patients (mean age = 42.4 ± 12.9, M/F = 16/26) and 49 HC (mean age = 42.3 ± 16.3, M/F = 28/21). Compared to HC, FD patients showed a widespread increase in R1 values encompassing both GM (pFWE = 0.02) and WM (pFWE = 0.02) structures. While no correlations were found between increased R1 values and FASTEX score, a significant negative correlation emerged between residual enzymatic activity levels and R1 values in GM (r = -0.57, p = 0.008) and WM (r = -0.49, p = 0.03). CONCLUSIONS: We demonstrated the feasibility and clinical relevance of non-invasively assessing cerebral Gb3 accumulation in FD using MRI. R1 mapping might be used as an in-vivo quantitative neuroimaging biomarker in FD patients.


Subject(s)
Fabry Disease , Magnetic Resonance Imaging , Trihexosylceramides , Humans , Fabry Disease/diagnostic imaging , Fabry Disease/metabolism , Male , Female , Adult , Magnetic Resonance Imaging/methods , Trihexosylceramides/metabolism , Cross-Sectional Studies , Retrospective Studies , Case-Control Studies , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , White Matter/diagnostic imaging , White Matter/metabolism
8.
Cerebellum ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436911

ABSTRACT

The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.

9.
Hum Brain Mapp ; 45(5): e26599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520360

ABSTRACT

While neurological manifestations are core features of Fabry disease (FD), quantitative neuroimaging biomarkers allowing to measure brain involvement are lacking. We used deep learning and the brain-age paradigm to assess whether FD patients' brains appear older than normal and to validate brain-predicted age difference (brain-PAD) as a possible disease severity biomarker. MRI scans of FD patients and healthy controls (HCs) from a single Institution were, retrospectively, studied. The Fabry stabilization index (FASTEX) was recorded as a measure of disease severity. Using minimally preprocessed 3D T1-weighted brain scans of healthy subjects from eight publicly available sources (N = 2160; mean age = 33 years [range 4-86]), we trained a model predicting chronological age based on a DenseNet architecture and used it to generate brain-age predictions in the internal cohort. Within a linear modeling framework, brain-PAD was tested for age/sex-adjusted associations with diagnostic group (FD vs. HC), FASTEX score, and both global and voxel-level neuroimaging measures. We studied 52 FD patients (40.6 ± 12.6 years; 28F) and 58 HC (38.4 ± 13.4 years; 28F). The brain-age model achieved accurate out-of-sample performance (mean absolute error = 4.01 years, R2 = .90). FD patients had significantly higher brain-PAD than HC (estimated marginal means: 3.1 vs. -0.1, p = .01). Brain-PAD was associated with FASTEX score (B = 0.10, p = .02), brain parenchymal fraction (B = -153.50, p = .001), white matter hyperintensities load (B = 0.85, p = .01), and tissue volume reduction throughout the brain. We demonstrated that FD patients' brains appear older than normal. Brain-PAD correlates with FD-related multi-organ damage and is influenced by both global brain volume and white matter hyperintensities, offering a comprehensive biomarker of (neurological) disease severity.


Subject(s)
Deep Learning , Fabry Disease , Leukoaraiosis , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Fabry Disease/diagnostic imaging , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging , Biomarkers
10.
Neuroradiology ; 66(8): 1345-1352, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38374410

ABSTRACT

OBJECTIVES: In the neuroradiological work-up of Multiple Sclerosis (MS), the detection of "black holes" (BH) represent an information of undeniable importance. Nevertheless, different sequences can be used in clinical practice to evaluate BH in MS. Aim of this study was to investigate the possible impact of different sequences, resolutions, and levels of expertise on the intra- and inter-rater reliability identification of BH in MS. METHODS: Brain MRI scans of 85 MS patients (M/F = 22/63; mean age = 36.0 ± 10.2 years) were evaluated in this prospective single-center study. The acquisition protocol included a 3 mm SE-T1w sequence, a 1 mm 3D-GrE-T1w sequence from which a resliced 3 mm sequence was also obtained. Images were evaluated independently by two readers of different expertise at baseline and after a wash-out period of 30 days. The intraclass correlation coefficient (ICC) was calculated as an index of intra and inter-reader reliability. RESULTS: For both readers, the intra-reader ICC analysis showed that the 3 mm SE-T1w and 3 mm resliced GrE-T1w images achieved an excellent performance (both with an ICC ≥ 0.95), while 1 mm 3D-GrE-T1w scans achieved a moderate one (ICC < 0.90). The inter-reader analysis showed that each of the three sequences achieved a moderate performance (all ICCs < 0.90). CONCLUSIONS: The 1 mm 3D-GrE-T1w sequence seems to be prone to a greater intra-reader variability compared to the 3 mm SE-T1w, with this effect being driven by the higher spatial resolution of the first sequence. To ensure reliability levels comparable with the standard SE-T1w in BH count, an assessment on a 3 mm resliced GrE-T1w sequence should be recommended.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Female , Magnetic Resonance Imaging/methods , Male , Adult , Prospective Studies , Reproducibility of Results , Clinical Competence , Image Interpretation, Computer-Assisted/methods , Observer Variation , Imaging, Three-Dimensional/methods , Image Enhancement/methods , Middle Aged
11.
J Neuroophthalmol ; 44(1): 112-118, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37967050

ABSTRACT

BACKGROUND: Visual snow syndrome (VSS) is associated with functional connectivity (FC) dysregulation of visual networks (VNs). We hypothesized that mindfulness-based cognitive therapy, customized for visual symptoms (MBCT-vision), can treat VSS and modulate dysfunctional VNs. METHODS: An open-label feasibility study for an 8-week MBCT-vision treatment program was conducted. Primary (symptom severity; impact on daily life) and secondary (WHO-5; CORE-10) outcomes at Week 9 and Week 20 were compared with baseline. Secondary MRI outcomes in a subcohort compared resting-state functional and diffusion MRI between baseline and Week 20. RESULTS: Twenty-one participants (14 male participants, median 30 years, range 22-56 years) recruited from January 2020 to October 2021. Two (9.5%) dropped out. Self-rated symptom severity (0-10) improved: baseline (median [interquartile range (IQR)] 7 [6-8]) vs Week 9 (5.5 [3-7], P = 0.015) and Week 20 (4 [3-6], P < 0.001), respectively. Self-rated impact of symptoms on daily life (0-10) improved: baseline (6 [5-8]) vs Week 9 (4 [2-5], P = 0.003) and Week 20 (2 [1-3], P < 0.001), respectively. WHO-5 Wellbeing (0-100) improved: baseline (median [IQR] 52 [36-56]) vs Week 9 (median 64 [47-80], P = 0.001) and Week 20 (68 [48-76], P < 0.001), respectively. CORE-10 Distress (0-40) improved: baseline (15 [12-20]) vs Week 9 (12.5 [11-16.5], P = 0.003) and Week 20 (11 [10-14], P = 0.003), respectively. Within-subject fMRI analysis found reductions between baseline and Week 20, within VN-related FC in the i) left lateral occipital cortex (size = 82 mL, familywise error [FWE]-corrected P value = 0.006) and ii) left cerebellar lobules VIIb/VIII (size = 65 mL, FWE-corrected P value = 0.02), and increases within VN-related FC in the precuneus/posterior cingulate cortex (size = 69 mL, cluster-level FWE-corrected P value = 0.02). CONCLUSIONS: MBCT-vision was a feasible treatment for VSS, improved symptoms and modulated FC of VNs. This study also showed proof-of-concept for intensive mindfulness interventions in the treatment of neurological conditions.


Subject(s)
Cognitive Behavioral Therapy , Mindfulness , Perceptual Disorders , Vision Disorders , Humans , Male , Feasibility Studies , Magnetic Resonance Imaging , Treatment Outcome
12.
JAMA Neurol ; 81(2): 143-153, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38079177

ABSTRACT

Importance: Multiple sclerosis (MS) misdiagnosis remains an important issue in clinical practice. Objective: To quantify the performance of cortical lesions (CLs) and central vein sign (CVS) in distinguishing MS from other conditions showing brain lesions on magnetic resonance imaging (MRI). Design, Setting, and Participants: This was a retrospective, cross-sectional multicenter study, with clinical and MRI data acquired between January 2010 and May 2020. Centralized MRI analysis was conducted between July 2020 and December 2022 by 2 raters blinded to participants' diagnosis. Participants were recruited from 14 European centers and from a multicenter pan-European cohort. Eligible participants had a diagnosis of MS, clinically isolated syndrome (CIS), or non-MS conditions; availability of a brain 3-T MRI scan with at least 1 sequence suitable for CL and CVS assessment; presence of T2-hyperintense white matter lesions (WMLs). A total of 1051 individuals were included with either MS/CIS (n = 599; 386 [64.4%] female; mean [SD] age, 41.5 [12.3] years) or non-MS conditions (including other neuroinflammatory disorders, cerebrovascular disease, migraine, and incidental WMLs in healthy control individuals; n = 452; 302 [66.8%] female; mean [SD] age, 49.2 [14.5] years). Five individuals were excluded due to missing clinical or demographic information (n = 3) or unclear diagnosis (n = 2). Exposures: MS/CIS vs non-MS conditions. Main Outcomes and Measures: Area under the receiver operating characteristic curves (AUCs) were used to explore the diagnostic performance of CLs and the CVS in isolation and in combination; sensitivity, specificity, and accuracy were calculated for various cutoffs. The diagnostic importance of CLs and CVS compared to conventional MRI features (ie, presence of infratentorial, periventricular, and juxtacortical WMLs) was ranked with a random forest model. Results: The presence of CLs and the previously proposed 40% CVS rule had a sensitivity, specificity, and accuracy for MS of 59.0% (95% CI, 55.1-62.8), 93.6% (95% CI, 91.4-95.6), and 73.9% (95% CI, 71.6-76.3) and 78.7% (95% CI, 75.5-82.0), 86.0% (95% CI, 82.1-89.5), and 81.5% (95% CI, 78.9-83.7), respectively. The diagnostic performance of the CVS (AUC, 0.89 [95% CI, 0.86-0.91]) was superior to that of CLs (AUC, 0.77 [95% CI, 0.75-0.80]; P < .001), and was increased when combining the 2 imaging markers (AUC, 0.92 [95% CI, 0.90-0.94]; P = .04); in the random forest model, both CVS and CLs outperformed the presence of infratentorial, periventricular, and juxtacortical WMLs in supporting MS differential diagnosis. Conclusions and Relevance: The findings in this study suggest that CVS and CLs may be valuable tools to increase the accuracy of MS diagnosis.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Humans , Female , Adult , Middle Aged , Male , Multiple Sclerosis/diagnosis , Retrospective Studies , Cross-Sectional Studies , Brain/pathology , Veins/pathology , Demyelinating Diseases/pathology , Magnetic Resonance Imaging/methods
13.
Cerebellum ; 23(2): 757-774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37155088

ABSTRACT

The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.


Subject(s)
Cerebellar Ataxia , Hypogonadism , Humans , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/genetics , Cerebellar Ataxia/complications , Hypogonadism/diagnostic imaging , Hypogonadism/genetics , Brain/diagnostic imaging , Pituitary Gland/diagnostic imaging , Magnetic Resonance Imaging
14.
Mult Scler Relat Disord ; 76: 104842, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392716

ABSTRACT

INTRODUCTION: Intellectual enrichment and brain reserve modulate the expression of cognitive and motor disability in multiple sclerosis (MS). Their association with fatigue, one of the most debilitating and common symptoms of MS, has never been explored. MATERIALS AND METHODS: Forty-eight MS patients underwent clinical and MRI examination at baseline and after 1 year. Physical and cognitive MS-related fatigue were evaluated via Modified Fatigue Impact subscales (MFIS-P and MFIS-C). Differences in reserve indexes between fatigued and non-fatigued patients were tested. The relationship between clinico-demographic features, global brain structural damage, indexes of reserve (age-adjusted intracranial volume and cognitive reserve index) and fatigue were tested via correlations and hierarchical linear/binary logistic regression, to predict MFIS-P and MFIS-C (at baseline) or new-onset fatigue and meaningful worsening in MFIS (at follow-up). RESULTS: At baseline, although a significant difference was identified for cognitive reserve questionnaire between fatigued and non-fatigued patients (18.19 ± 4.76 versus 15.15 ± 3.56, p = 0.015), only depression accounted for significant variance in MFIS-P and MFIS-C (R2=0.248, p = 0.002; R2=0.252, p<0.001). MFIS-T, MFIS-P and MFIS-C changes over time were associated to depression changes over time (r = 0.56, r = 0.55, and r = 0.57, respectively; all p<0.001). Indexes of reserve did not differ between non-fatigued patients and patients developing new-onset fatigue at follow-up. None of the baseline features was able to predict the new-onset fatigue or meaningful worsening in MFIS at follow-up. CONCLUSIONS: Among the explored features, only depression was strongly associated to both physical and cognitive fatigue. Intellectual enrichment and brain reserve did not seem to affect fatigue symptoms in MS patients.


Subject(s)
Disabled Persons , Motor Disorders , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Linear Models , Surveys and Questionnaires
16.
Cereb Cortex ; 33(12): 7322-7334, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36813475

ABSTRACT

The relationship between structural connectivity (SC) and functional connectivity (FC) captured from magnetic resonance imaging, as well as its interaction with disability and cognitive impairment, is not well understood in people with multiple sclerosis (pwMS). The Virtual Brain (TVB) is an open-source brain simulator for creating personalized brain models using SC and FC. The aim of this study was to explore SC-FC relationship in MS using TVB. Two different model regimes have been studied: stable and oscillatory, with the latter including conduction delays in the brain. The models were applied to 513 pwMS and 208 healthy controls (HC) from 7 different centers. Models were analyzed using structural damage, global diffusion properties, clinical disability, cognitive scores, and graph-derived metrics from both simulated and empirical FC. For the stable model, higher SC-FC coupling was associated with pwMS with low Single Digit Modalities Test (SDMT) score (F=3.48, P$\lt$0.05), suggesting that cognitive impairment in pwMS is associated with a higher SC-FC coupling. Differences in entropy of the simulated FC between HC, high and low SDMT groups (F=31.57, P$\lt$1e-5), show that the model captures subtle differences not detected in the empirical FC, suggesting the existence of compensatory and maladaptive mechanisms between SC and FC in MS.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Brain , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology
17.
Hum Brain Mapp ; 44(7): 2829-2840, 2023 05.
Article in English | MEDLINE | ID: mdl-36852587

ABSTRACT

While verbal memory is among the most compromised cognitive domains in schizophrenia (SZ), its neural substrates remain elusive. Here, we explored the structural and functional brain network correlates of verbal memory impairment in SZ. We acquired diffusion and resting-state functional MRI data of 49 SZ patients, classified as having preserved (VMP, n = 22) or impaired (VMI, n = 26) verbal memory based on the List Learning task, and 55 healthy controls (HC). Structural and functional connectivity matrices were obtained and analyzed to assess associations with disease status (SZ vs. HC) and verbal memory impairment (VMI vs. VMP) using two complementary data-driven approaches: threshold-free network-based statistics (TFNBS) and hybrid connectivity independent component analysis (connICA). TFNBS showed altered connectivity in SZ patients compared with HC (p < .05, FWER-corrected), with distributed structural changes and functional reorganization centered around sensorimotor areas. Specifically, functional connectivity was reduced within the visual and somatomotor networks and increased between visual areas and associative and subcortical regions. Only a tiny cluster of increased functional connectivity between visual and bilateral parietal attention-related areas correlated with verbal memory dysfunction. Hybrid connICA identified four robust traits, representing fundamental patterns of joint structural-functional connectivity. One of these, mainly capturing the functional connectivity profile of the visual network, was significantly associated with SZ (HC vs. SZ: Cohen's d = .828, p < .0001) and verbal memory impairment (VMP vs. VMI: Cohen's d = -.805, p = .01). We suggest that aberrant connectivity of sensorimotor networks may be a key connectomic signature of SZ and a putative biomarker of SZ-related verbal memory impairment, in consistency with bottom-up models of cognitive disruption.


Subject(s)
Connectome , Schizophrenia , Humans , Magnetic Resonance Imaging , Memory , Brain , Memory Disorders
18.
Schizophr Bull ; 49(2): 474-485, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36268829

ABSTRACT

BACKGROUND AND HYPOTHESIS: Treatment resistant schizophrenia (TRS) affects almost 30% of patients with schizophrenia and has been considered a different phenotype of the disease. In vivo characterization of brain metabolic patterns associated with treatment response could contribute to elucidate the neurobiological underpinnings of TRS. Here, we used 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) to provide the first head-to-head comparative analysis of cerebral glucose metabolism in TRS patients compared to schizophrenia responder patients (nTRS), and controls. Additionally, we investigated, for the first time, the differences between clozapine responders (Clz-R) and non-responders (Clz-nR). STUDY DESIGN: 53 participants underwent FDG-PET studies (41 patients and 12 controls). Response to conventional antipsychotics and to clozapine was evaluated using a standardized prospective procedure based on PANSS score changes. Maps of relative brain glucose metabolism were processed for voxel-based analysis using Statistical Parametric Mapping software. STUDY RESULTS: Restricted areas of significant bilateral relative hypometabolism in the superior frontal gyrus characterized TRS compared to nTRS. Moreover, reduced parietal and frontal metabolism was associated with high PANSS disorganization factor scores in TRS (P < .001 voxel level uncorrected, P < .05 cluster level FWE-corrected). Only TRS compared to controls showed significant bilateral prefrontal relative hypometabolism, more extensive in CLZ-nR than in CLZ-R (P < .05 voxel level FWE-corrected). Relative significant hypermetabolism was observed in the temporo-occipital regions in TRS compared to nTRS and controls. CONCLUSIONS: These data indicate that, in TRS patients, altered metabolism involved discrete brain regions not found affected in nTRS, possibly indicating a more severe disrupted functional brain network associated with disorganization symptoms.


Subject(s)
Clozapine , Schizophrenia , Humans , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Schizophrenia, Treatment-Resistant , Clozapine/pharmacology , Clozapine/therapeutic use , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/metabolism , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods
19.
Eur Radiol ; 33(3): 2185-2194, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36241917

ABSTRACT

OBJECTIVES: The clinical impact of brain microstructural abnormalities in multiple sclerosis (MS) remains elusive. We aimed to characterize the topography of longitudinal relaxation rate (R1) and quantitative susceptibility (χ) changes, as indices of iron and myelin, together with brain atrophy, and to clarify their contribution to cognitive and motor disability in MS. METHODS: In this cross-sectional study, voxel-based morphometry, and voxel-based quantification analyses of R1 and χ maps were conducted in gray matter (GM) and white matter (WM) of 117 MS patients and 53 healthy controls. Voxel-wise between-group differences were assessed with nonparametric permutation tests, while correlations between MRI metrics and clinical variables (global disability, cognitive and motor performance) were assessed both globally and voxel-wise within clusters emerging from the between-group comparisons. RESULTS: MS patients showed widespread R1 decrease associated with more limited modifications of χ, with atrophy mainly involving deep GM, posterior and infratentorial regions (p < 0.02). While R1 and χ showed a parallel reduction in several WM tracts (p < 0.001), reduced GM R1 values (p < 0.001) were associated with decreased thalamic χ (p < 0.001) and small clusters of increased χ in the caudate nucleus and prefrontal cortex (p < 0.02). In addition to the atrophy, χ values in the cingulum and corona radiata correlated with global disability and motor performance, while focal demyelination correlated with cognitive performance (p < 0.04). CONCLUSIONS: We confirmed the presence of widespread R1 changes, involving both GM and WM, and atrophy in MS, with less extensive modifications of tissue χ. While atrophy and χ changes are related to global and motor disability, R1 changes are meaningful correlates of cognition. KEY POINTS: • Compared to healthy controls, multiple sclerosis patients showed R1 and χ changes suggestive of iron increase within the basal ganglia and reduced iron and myelin content within (subnuclei of) the thalamus. • Thalamic volume and χ changes significantly predicted clinical disability, as well as pulvinar R1 and χ changes, independently from atrophy. • Atrophy-independent R1 and χ changes, suggestive of thalamic iron and myelin depletion, may represent a sensitive marker of subclinical inflammation.


Subject(s)
Brain Diseases , Disabled Persons , Motor Disorders , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Myelin Sheath , Cross-Sectional Studies , Iron , Motor Disorders/complications , Motor Disorders/pathology , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging , Brain Diseases/pathology , Atrophy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL