Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125704

ABSTRACT

Extracellular vesicles (EVs) are relatively recently discovered biological nanoparticles that mediate intercellular communication. The development of new methods for the isolation and characterization of EVs is crucial to support further studies on these small and structurally heterogenous vesicles. New scalable production methods are also needed to meet the needs of future therapeutic applications. A reliable inline detection method for the EV manufacturing process is needed to ensure reproducibility and to identify any possible variations in real time. Here, we demonstrate the use of an inline Raman detector in conjunction with anion exchange chromatography for the isolation of EVs from human platelets. Anion-exchange chromatography can be easily coupled with multiple inline detectors and provides an alternative to size-based methods for separating EVs from similar-sized impurities, such as lipoprotein particles. Raman spectroscopy enabled us to identify functional groups in EV samples and trace EVs and impurities in different stages of the process. Our results show a notable separation of impurities from the EVs during anion-exchange chromatography and demonstrate the power of inline Raman spectroscopy. Compared to conventional EV analysis methods, the inline Raman approach does not require hands-on work and can provide detailed, real-time information about the sample and the purification process.


Subject(s)
Blood Platelets , Extracellular Vesicles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Chromatography, Ion Exchange/methods , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Blood Platelets/metabolism , Blood Platelets/chemistry , Anions
2.
Viruses ; 16(1)2024 01 22.
Article in English | MEDLINE | ID: mdl-38275976

ABSTRACT

Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.


Subject(s)
RNA, Double-Stranded , RNA-Dependent RNA Polymerase , RNA, Double-Stranded/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA Interference , Nucleotidyltransferases/genetics
3.
Viruses ; 15(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38005832

ABSTRACT

Half a century has passed since the discovery of Pseudomonas phage phi6, the first enveloped dsRNA bacteriophage to be isolated. It remained the sole known dsRNA phage for a quarter of a century and the only recognised member of the Cystoviridae family until the year 2018. After the initial discovery of phi6, additional dsRNA phages have been isolated from globally distant locations and identified in metatranscriptomic datasets, suggesting that this virus type is more ubiquitous in nature than previously acknowledged. Most identified dsRNA phages infect Pseudomonas strains and utilise either pilus or lipopolysaccharide components of the host as the primary receptor. In addition to the receptor-mediated strictly lytic lifestyle, an alternative persistent infection strategy has been described for some dsRNA phages. To date, complete genome sequences of fourteen dsRNA phage isolates are available. Despite the high sequence diversity, similar sets of genes can typically be found in the genomes of dsRNA phages, suggesting shared evolutionary trajectories. This review provides a brief overview of the recognised members of the Cystoviridae virus family and related dsRNA phage isolates, outlines the current classification of dsRNA phages, and discusses their relationships with eukaryotic RNA viruses.


Subject(s)
Bacteriophages , Pseudomonas Phages , Bacteriophages/genetics , Pseudomonas Phages/genetics , Pseudomonas , Genome, Viral
4.
PLoS Biol ; 21(2): e3001922, 2023 02.
Article in English | MEDLINE | ID: mdl-36780432

ABSTRACT

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Subject(s)
Bacteriophages , Viruses , Humans , Metagenomics , Phylogeny , Viruses/genetics
5.
Arch Virol ; 168(2): 74, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36683075

ABSTRACT

This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.


Subject(s)
Bacteriophages , Caudovirales , Siphoviridae , Viruses , Humans , Viruses/genetics , Myoviridae
6.
PLoS Pathog ; 18(7): e1010688, 2022 07.
Article in English | MEDLINE | ID: mdl-35793357

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2'-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Acyclovir/metabolism , Acyclovir/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Epithelial Cells/metabolism , Herpes Simplex/genetics , Herpes Simplex/therapy , Herpesvirus 1, Human/physiology , Humans , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Virus Replication/genetics
7.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215370

ABSTRACT

RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.

8.
Article in English | MEDLINE | ID: mdl-35121528

ABSTRACT

An efficient chromatography-based virus purification method has been developed and validated for the non-pathogenic infectious virus PRD1. Compared to the conventional method that consists of relatively time-consuming and labour-intensive precipitation and density gradient ultracentrifugation steps, the method developed here is performed in a single flow using tandem-coupled anion exchange and size exclusion chromatography (AIEX-SEC) columns. This inline approach helps to minimize the loss of virus in the process and streamlines time consumption, since no physical transfer of the sample is required between purification steps. In the development process, sample feed composition, dynamic binding capacity and elution conditions for the AIEX resin as well as different exclusion limits for SEC resins were optimized to achieve maximal yield of pure infectious viruses. Utilizing this new approach, a high-quality virus sample was produced from a lysate feed in 320 min with a total yield of 13 mg purified particles per litre of cell lysate, constituting a 3.5-fold yield increase as compared to the conventional method, without compromising the high specific infectivity of the product (6 × 1012 to 7 × 1012 pfu/mg of protein). The yield of infectious viruses of the lysate feed was 54%. The easy scalability of chromatography-based methods provide a direct route to industrial usage without any significant changes needed to be made to the purification regime. This is especially interesting as the method has high potential to be used for purification of various viruses and nanoparticles, including adenovirus.


Subject(s)
Chromatography, Gel/methods , Sepharose/chemistry , Virus Cultivation/methods , Viruses/isolation & purification , Bacteriophage PRD1/chemistry , Bacteriophage PRD1/isolation & purification , Chromatography, Ion Exchange/methods , Viruses/chemistry
9.
J Hepatol ; 76(4): 822-831, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34952035

ABSTRACT

BACKGROUND & AIMS: Interleukin-26 (IL-26) is a proinflammatory cytokine that has properties atypical for a cytokine, such as direct antibacterial activity and DNA-binding capacity. We previously observed an accumulation of IL-26 in fibrotic and inflammatory lesions in the livers of patients with chronic HCV infection and showed that infiltrating CD3+ lymphocytes were the principal source of IL-26. Surprisingly, IL-26 was also detected in the cytoplasm of hepatocytes from HCV-infected patients, even though these cells do not produce IL-26, even when infected with HCV. Based on this observation and possible interactions between IL-26 and nucleic acids, we investigated the possibility that IL-26 controlled HCV infection independently of the immune system. METHODS: We evaluated the ability of IL-26 to interfere with HCV replication in hepatocytes and investigated the mechanisms by which IL-26 exerts its antiviral activity. RESULTS: We showed that IL-26 penetrated HCV-infected hepatocytes, where it interacted directly with HCV double-stranded RNA replication intermediates, thereby inhibiting viral replication. IL-26 interfered with viral RNA-dependent RNA polymerase activity, preventing the de novo synthesis of viral genomic single-stranded RNA. CONCLUSIONS: These findings reveal a new role for IL-26 in direct protection against HCV infection, independently of the immune system, and increase our understanding of the antiviral defense mechanisms controlling HCV infection. Future studies should evaluate the possible use of IL-26 for treating other chronic disorders caused by RNA viruses, for which few treatments are currently available, or emerging RNA viruses. LAY SUMMARY: This study sheds new light on the body's arsenal for controlling hepatitis C virus (HCV) infection and identifies interleukin-26 (IL-26) as an antiviral molecule capable of blocking HCV replication. IL-26, which has unique biochemical and structural characteristics, penetrates infected hepatocytes and interacts directly with viral RNA, thereby blocking viral replication. IL-26 is, therefore, a new player in antiviral defenses, operating independently of the immune system. It is of considerable potential interest for treating HCV infection and other chronic disorders caused by RNA viruses for which few treatments are currently available, and for combating emerging RNA viruses.


Subject(s)
Hepacivirus , Hepatitis C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokines , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatocytes , Humans , Interleukins/pharmacology , Virus Replication
10.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: mdl-34960758

ABSTRACT

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Cell Line , Drug Synergism , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Metabolome/drug effects , Organoids , RNA, Viral/biosynthesis , RNA, Viral/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Replication/drug effects , Viruses/classification , Viruses/drug effects
11.
Open Biol ; 11(9): 210188, 2021 09.
Article in English | MEDLINE | ID: mdl-34520699

ABSTRACT

The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Lysogeny , Persistent Infection/pathology , Ecosystem , Persistent Infection/etiology
12.
Viruses ; 13(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34578320

ABSTRACT

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


Subject(s)
RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/metabolism , Viral Replicase Complex Proteins/metabolism , Fungal Viruses/genetics , Fungal Viruses/metabolism , Genome, Viral , Nucleotidyltransferases , RNA Viruses/genetics , RNA, Double-Stranded , RNA, Viral , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
13.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34417873

ABSTRACT

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Subject(s)
Archaeal Viruses/classification , Bacteriophages/classification , Societies, Scientific/organization & administration , Archaea/virology , Bacteria/virology
14.
Viruses ; 13(2)2021 02 17.
Article in English | MEDLINE | ID: mdl-33671332

ABSTRACT

RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure-based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism. The structure-based distance tree presented here follows the recently established RdRp-based RNA virus classification at genus, subfamily, family, order, class and subphylum ranks. However, the topology of our phylogenetic tree suggests an alternative phylum level organization.


Subject(s)
RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Proteins/chemistry , Models, Molecular , Phylogeny , Protein Conformation, alpha-Helical , Protein Domains , RNA Viruses/chemistry , RNA Viruses/classification , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
15.
Viruses ; 12(12)2020 12 13.
Article in English | MEDLINE | ID: mdl-33322225

ABSTRACT

Acyclovir is the drug of choice for the treatment of herpes simplex virus (HSV) infections. Acyclovir-resistant HSV strains may emerge, especially during long-term drug use, and subsequently cause difficult-to-treat exacerbations. Previously, we set up a novel treatment approach, based on enzymatically synthesized pools of siRNAs, or siRNA swarms. These swarms can cover kilobases-long target sequences, reducing the likelihood of resistance to treatment. Swarms targeting the UL29 essential gene of HSV-1 have demonstrated high efficacy against HSV-1 in vitro and in vivo. Here, we assessed the antiviral potential of a UL29 siRNA swarm against circulating strains of HSV-1, in comparison with acyclovir. All circulating strains were sensitive to both antivirals, with the half-maximal inhibitory concentrations (IC50) in the range of 350-1911 nM for acyclovir and 0.5-3 nM for the UL29 siRNA swarm. Additionally, we showed that an acyclovir-resistant HSV-1, devoid of thymidine kinase, is highly sensitive to UL29 siRNA treatment (IC50 1.0 nM; Imax 97%). Moreover, the detected minor variations in the RNAi target of the HSV strains had no effect on the potency or efficacy of UL29 siRNA swarm treatment. Our findings support the development of siRNA swarms for the treatment of HSV-1 infections, in order to circumvent any potential acyclovir resistance.


Subject(s)
Acyclovir/pharmacology , DNA-Binding Proteins/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , RNA Interference , RNA, Small Interfering/genetics , Viral Proteins/genetics , Acyclovir/therapeutic use , Animals , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Herpes Simplex/therapy , Herpesvirus 1, Human/classification , Herpesvirus 1, Human/isolation & purification , Humans , Inhibitory Concentration 50 , Vero Cells
16.
J Gen Virol ; 101(9): 894-895, 2020 09.
Article in English | MEDLINE | ID: mdl-32840474

ABSTRACT

Finnlakeviridae is a family of icosahedral, internal membrane-containing bacterial viruses with circular, single-stranded DNA genomes. The family includes the genus, Finnlakevirus, with the species, Flavobacterium virus FLiP. Flavobacterium phage FLiP was isolated with its Gram-negative host bacterium from a boreal freshwater habitat in Central Finland in 2010. It is the first described single-stranded DNA virus with an internal membrane and shares minimal sequence similarity with other known viruses. The virion organization (pseudo T=21 dextro) and major capsid protein fold (double-ß-barrel) resemble those of Pseudoalteromonas phage PM2 (family Corticoviridae), which has a double-stranded DNA genome. A similar major capsid protein fold is also found in other double-stranded DNA viruses in the kingdom Bamfordvirae. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Finnlakeviridae, which is available at ictv.global/report/finnlakeviridae.


Subject(s)
Bacteriophages , DNA Viruses , Flavobacterium/virology , Bacteriolysis , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/ultrastructure , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/physiology , DNA Viruses/ultrastructure , DNA, Single-Stranded/genetics , DNA, Viral/genetics , Genome, Viral , Virion/chemistry , Virion/ultrastructure , Virus Replication
17.
Antiviral Res ; 182: 104916, 2020 10.
Article in English | MEDLINE | ID: mdl-32798603

ABSTRACT

Chemical modifications of small interfering (si)RNAs are used to enhance their stability and potency, and to reduce possible off-target effects, including immunogenicity. We have earlier introduced highly effective antiviral siRNA swarms against herpes simplex virus (HSV), targeting 653 bp of the essential UL29 viral gene. Here, we report a method for enzymatic production and antiviral use of 2'-fluoro-modified siRNA swarms. Utilizing the RNA-dependent RNA polymerase from bacteriophage phi6, we produced 2'-F-siRNA swarms containing either all or a fraction of modified adenosine, cytidine or uridine residues in the antisense strand of the UL29 target. The siRNA containing modified pyrimidines demonstrated high resistance to RNase A and the antiviral potency of all the UL29-specific 2'-F-siRNA swarms was 100-fold in comparison with the unmodified counterpart, without additional cytotoxicity. Modest stimulation of innate immunity signaling, including induced expression of both type I and type III interferons, as well as interferon-stimulated gene 54, by 2'-F-cytidine and 2'-F-uridine modified siRNA swarms occurred at early time points after transfection while the 2'-F-adenosine-containing siRNA was similar to the unmodified antiviral siRNA swarm in this respect. The antiviral efficacy of the 2'-F-siRNA swarms and the elicited cellular innate responses did not correlate suggesting that innate immunity pathways do not significantly contribute to the observed enhanced antiviral activity of the modified siRNAs. The results support further applications of enzymatically produced siRNA molecules with incorporated adenosine nucleotides, carrying fluoro-modification on ribose C2' position, for further antiviral studies in vitro and in vivo.


Subject(s)
Antiviral Agents/pharmacology , Cell Survival , Herpesvirus 1, Human/drug effects , Immunity, Innate , RNA, Small Interfering/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Adenosine/metabolism , Bacteriophage phi 6/enzymology , Cell Line , Cell Line, Tumor , Cytidine/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Herpesvirus 1, Human/immunology , Humans , RNA, Small Interfering/chemical synthesis , Transfection , Uridine/metabolism , Viral Proteins/antagonists & inhibitors
18.
Nucleic Acids Res ; 48(10): 5591-5602, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32286652

ABSTRACT

RNA virus survival depends on efficient viral genome replication, which is performed by the viral RNA dependent RNA polymerase (RdRp). The recent development of high throughput magnetic tweezers has enabled the simultaneous observation of dozens of viral RdRp elongation traces on kilobases long templates, and this has shown that RdRp nucleotide addition kinetics is stochastically interrupted by rare pauses of 1-1000 s duration, of which the short-lived ones (1-10 s) are the temporal signature of a low fidelity catalytic pathway. We present a simple and precise temperature controlled system for magnetic tweezers to characterize the replication kinetics temperature dependence between 25°C and 45°C of RdRps from three RNA viruses, i.e. the double-stranded RNA bacteriophage Φ6, and the positive-sense single-stranded RNA poliovirus (PV) and human rhinovirus C (HRV-C). We found that Φ6 RdRp is largely temperature insensitive, while PV and HRV-C RdRps replication kinetics are activated by temperature. Furthermore, the activation energies we measured for PV RdRp catalytic state corroborate previous estimations from ensemble pre-steady state kinetic studies, further confirming the catalytic origin of the short pauses and their link to temperature independent RdRp fidelity. This work will enable future temperature controlled study of biomolecular complex at the single molecule level.


Subject(s)
RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/metabolism , Temperature , Virus Replication , Bacteriophage phi 6/enzymology , Enterovirus/enzymology , Enzyme Activation , Kinetics , Microscopy , Poliovirus/enzymology
19.
Arch Virol ; 165(5): 1253-1260, 2020 May.
Article in English | MEDLINE | ID: mdl-32162068

ABSTRACT

This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.


Subject(s)
Archaeal Viruses/classification , Bacteriophages/classification , Classification/methods , Archaea/virology , Bacteria/virology
20.
Methods ; 183: 21-29, 2020 11 01.
Article in English | MEDLINE | ID: mdl-31682923

ABSTRACT

Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.


Subject(s)
Immunity, Innate/genetics , In Vitro Techniques/methods , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Transfection/methods , Animals , Cells, Cultured , DNA-Directed RNA Polymerases/metabolism , Genome, Viral , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferons/immunology , Interferons/metabolism , Primary Cell Culture/methods , RNA Interference , RNA Viruses/genetics , RNA Viruses/immunology , RNA, Double-Stranded , RNA, Viral/immunology , RNA-Dependent RNA Polymerase/metabolism , Ribonuclease III/metabolism , Viral Proteins/metabolism , Virus Replication/genetics , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL