Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 170: 115982, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056236

ABSTRACT

The phosphatidyl inositol 3-kinase (PI3K)/AKT signaling plays a critical role in cancer cell proliferation, migration, and invasion. This signal transduction axis in HPV-positive cervical cancer has been proved to be directly activated by E6/E7 proteins of the virus enhancing cervical cancer progression. Hence, the PI3K/AKT pathway is one of the key therapeutic targets for HPV-positive cervical cancer. Here we discovered that oxyresveratrol (Oxy) at noncytotoxic concentration specifically suppressed the phosphorylation of AKT but not ERK1/2. This potent inhibitory effect of Oxy was still observed even when cells were stimulated with fetal bovine serum. Inhibition of AKT phosphorylation at serine 473 by Oxy resulted in a significant decrease in serine 9 phosphorylation of GSK-3ß, a downstream target of AKT. Dephosphorylation of GSK-3ß at this serine residue activates its function in promoting the degradation of MCL-1, an anti-apoptotic protein. Results clearly demonstrated that in association with GSK-3ß activation, Oxy preferentially downregulated the expression of anti-apoptotic protein MCL-1. Furthermore, results from the functional analyses revealed that Oxy inhibited cervical cancer cell proliferation, at least in part through suppressing nuclear expression of Ki-67. Besides, the compound retarded cervical cancer cell migration even the cells were exposed to a potent enhancer of epithelial-mesenchymal transition, TGF-ß1. In consistent with these data, Oxy reduced the expression of ß-catenin, N-cadherin, and vimentin. In conclusion, the study disclosed that Oxy specifically inhibits the AKT/GSK-3ß/MCL-1 axis resulting in reduction in cervical cancer cell viability, proliferation, and migration.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Uterine Cervical Neoplasms/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Signal Transduction , beta Catenin/metabolism , Serine/pharmacology
2.
Foods ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893708

ABSTRACT

The global plant-based protein demand is rapidly expanding in line with the increase in the world's population. In this study, ultrasonic-assisted extraction (UAE) was applied to extract protein from Wolffia globosa as an alternative source. Enzymatic hydrolysis was used to modify the protein properties for extended use as a functional ingredient. The successful optimal conditions for protein extraction included a liquid to solid ratio of 30 mL/g, 25 min of extraction time, and a 78% sonication amplitude, providing a higher protein extraction yield than alkaline extraction by about 2.17-fold. The derived protein was rich in essential amino acids, including leucine, valine, and phenylalanine. Protamex and Alcalase were used to prepare protein hydrolysates with different degrees of hydrolysis, producing protein fragments with molecular weights ranging between <10 and 61.5 kDa. Enzymatic hydrolysis caused the secondary structural transformations of proteins from ß-sheets and random coils to α-helix and ß-turn structures. Moreover, it influenced the protein functional properties, particularly enhancing the protein solubility and emulsifying activity. Partial hydrolysis (DH3%) improved the foaming properties of proteins; meanwhile, an excess hydrolysis degree reduced the emulsifying stability and oil-binding capacity. The produced protein hydrolysates showed potential as anti-cancer peptides on human ovarian cancer cell lines.

3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569825

ABSTRACT

Re-epithelialization is delayed in aged skin due to a slow rate of keratinocyte proliferation, and this may cause complications. Thus, there has been development of new therapies that increase treatment efficacy for skin wounds. Epidermal growth factor (EGF) has been clinically used, but this agent is expensive, and its activity is less stable. Therefore, a stable compound possessing EGF-like properties may be an effective therapy, especially when combined with EGF. The current study discovered that pinocembrin (PC) effectively synergized with EGF in increasing keratinocyte viability. The combination of PC and EGF significantly enhanced the proliferation and wound closure rate of the keratinocyte monolayer through activating the phosphorylation of ERK and Akt. Although these effects of PC were like those of EGF, we clearly proved that PC did not transactivate EGFR. Recent data from a previous study revealed that PC activates G-protein-coupled receptor 120 which further activates ERK1/2 and Akt phosphorylation. Therefore, this clearly indicates that PC possesses a unique property to stimulate the growth and survival of keratinocytes through activating a different receptor, which subsequently conveys the signal to cross-talk with the effector kinases downstream of the EGFR, suggesting that PC is a potential compound to be combined with EGF.


Subject(s)
Epidermal Growth Factor , ErbB Receptors , Humans , Aged , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Keratinocytes/metabolism , Phosphorylation , Cell Proliferation
4.
Neurotherapeutics ; 20(5): 1330-1346, 2023 09.
Article in English | MEDLINE | ID: mdl-37493896

ABSTRACT

Pathogenic changes to TAR DNA-binding protein 43 (TDP-43) leading to alteration of its homeostasis are a common feature shared by several progressive neurodegenerative diseases for which there is no effective therapy. Here, we developed Drosophila lines expressing either wild type TDP-43 (WT) or that carrying an Amyotrophic Lateral Sclerosis /Frontotemporal Lobar Degeneration-associating G384C mutation that recapitulate several aspects of the TDP-43 pathology. To identify potential therapeutics for TDP-43-related diseases, we implemented a drug repurposing strategy that involved three consecutive steps. Firstly, we evaluated the improvement of eclosion rate, followed by the assessment of locomotive functions at early and late developmental stages. Through this approach, we successfully identified fingolimod, as a promising candidate for modulating TDP-43 toxicity. Fingolimod exhibited several beneficial effects in both WT and mutant models of TDP-43 pathology, including post-transcriptional reduction of TDP-43 levels, rescue of pupal lethality, and improvement of locomotor dysfunctions. These findings provide compelling evidence for the therapeutic potential of fingolimod in addressing TDP-43 pathology, thereby strengthening the rationale for further investigation and consideration of clinical trials. Furthermore, our study demonstrates the utility of our Drosophila-based screening pipeline in identifying novel therapeutics for TDP-43-related diseases. These findings encourage further scale-up screening endeavors using this platform to discover additional compounds with therapeutic potential for TDP-43 pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , TDP-43 Proteinopathies , Animals , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Drosophila/metabolism , Drug Repositioning , Fingolimod Hydrochloride/therapeutic use , TDP-43 Proteinopathies/pathology
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242538

ABSTRACT

In the current study, we identified a mechanism of resveratrol (RES) underlying its anti-cancer properties against human ovarian adenocarcinoma SKOV-3 cells. We investigated its anti-proliferative and apoptosis-inducing effects in combination with cisplatin, using cell viability assay, flow cytometry, immunofluorescence study and Western blot analysis. We discovered that RES suppressed cancer cell proliferation and stimulated apoptosis, especially when combined with cisplatin. This compound also inhibited SKOV-3 cell survival, which may partly be due to its potential to inhibit protein kinase B (AKT) phosphorylation and induce the S-phase cell cycle arrest. RES in combination with cisplatin strongly induced cancer cell apoptosis through activating the caspase-dependent cascade, which was associated with its ability to stimulate nuclear phosphorylation of p38 mitogen-activated protein kinase (MAPK), well recognized to be involved in transducing environmental stress signals. RES-induced p38 phosphorylation was very specific, and the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) was not mainly affected. Taken together, our study provides accumulated evidence that RES represses proliferation and promotes apoptosis in SKOV-3 ovarian cancer cells through activating the p38 MAPK pathway. It is interesting that this active compound may be used as an effective agent to sensitize ovarian cancer to apoptosis induced by standard chemotherapies.

6.
Pharmaceutics ; 14(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559293

ABSTRACT

Zika virus (ZIKV) infection has been recognized to cause adverse sequelae in the developing fetus. Specially, this virus activates the excessive release of IL-1ß causing inflammation and altered physiological functions in multiple organs. Although many attempts have been invested to develop vaccine, antiviral, and antibody therapies, development of agents focusing on limiting ZIKV-induced IL-1ß release have not gained much attention. We aimed to study the effects of alpinetin (AP) on IL-1ß production in human macrophage upon exposure to ZIKV. Our study demonstrated that ZIKV stimulated IL-1ß release in the culture supernatant of ZIKV-infected cells, and AP could effectively reduce the level of this cytokine. AP exhibited no virucidal activities against ZIKV nor caused alteration in viral production. Instead, AP greatly inhibited intracellular IL-1ß synthesis. Surprisingly, this compound did not inhibit ZIKV-induced activation of NF-κB and its nuclear translocation. However, AP could significantly inhibit ZIKV-induced p38 MAPK activation without affecting the phosphorylation status of ERK1/2 and JNK. These observations suggest the possibility that AP may reduce IL-1ß production, in part, through suppressing p38 MAPK signaling. Our current study sheds light on the possibility of using AP as an alternative agent for treating complications caused by ZIKV infection-induced IL-1ß secretion.

7.
Cells ; 11(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36078140

ABSTRACT

Overgrowths of dermal fibroblasts and myofibroblast phenoconversion in response to TGF-ß stimulation are the hallmarks of skin fibrosis. Constitutive activation of dermal fibroblasts by TGF-ß induces the excessive production of extracellular matrix as well as certain key intracellular proteins which form a complex interaction network. Current therapies include monoclonal anti-bodies against TGF-ß and surgery, but these treatments generally elicit a limited effect on certain kinds of skin fibrosis. In the current study, we investigated the effects of alpinetin (AP) on human primary dermal fibroblasts (HPDFs) stimulated with TGF-ß1. Results demonstrated that AP exhibited strong inhibitory effects on TGF-ß1-induced proliferation and migration of HPDFs. AP also inhibited TGF-ß1-induced morphological changes of fibroblasts to myofibroblasts, and these were found to be from its effects on blocking actin stress fiber formation and organization. The expression of major fibrotic molecules including α-SMA and type I collagen upon TGF-ß1 stimulation was also inhibited by AP. In addition, AP attenuated TGF-ß1-induced production and organization of vimentin, ß-catenin, and N-cadherin, important for the pathophysiology of skin fibrosis. In conclusion, we revealed that AP has an ability to reverse the fibrotic effects of TGF-ß1 at the cellular level, and this discovery suggests the therapeutic potential of AP for skin fibrosis.


Subject(s)
Fibroblasts , Flavanones , Transforming Growth Factor beta1 , Biomarkers , Fibroblasts/metabolism , Fibrosis/metabolism , Flavanones/pharmacology , Humans , Myofibroblasts/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
8.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36015102

ABSTRACT

Pinocembrin is one of the well-known compounds in the group of flavonoids. The pharmacological activities of pinocembrin in association with wound-healing activities have been reported. However, its effects on the aspect of cellular interaction underlying growth and survival are still unidentified in human keratinocytes. Our previous study reported that Boesenbergia rotunda potently stimulated survival and proliferation of a human keratinocyte cell line (HaCaT). On the basis that pinocembrin is revealed to be one of the major constituents of this plant, we aimed to define the survival- and proliferation-enhancing effects of this compound at the cellular level. Results from the current study confirmed that pinocembrin induced an increase in HaCaT cell number. At the signaling perspective, we identified that pinocembrin significantly triggered ERK1/2 and Akt activation. The stimulating effects of pinocembrin were clearly inhibited by MEK and PI3K inhibitors authenticating that proliferation- and survival-promoting activities of pinocembrin were mainly acted on these two signaling cascades. Altogether, we successfully identified that pinocembrin functions to induce keratinocyte proliferation and survival, at least by provoking MAPK and PI3K pathways. Our study encourages the fact that pinocembrin is one of the interesting natural flavonoid compounds to be developed as a wound closure-promoting agent.

9.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012644

ABSTRACT

MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate target mRNA expression, and altered expression of miRNAs is associated with liver pathological conditions. Recent studies in animal models have shown neutrophil/myeloid-specific microRNA-223 (miR-223) as a key regulator in the development of various liver diseases including fibrosis, where hepatic stellate cells (HSCs) are the key player in pathogenesis. However, the precise roles of miR-223 in human HSCs and its therapeutic potential to control fibrosis remain largely unexplored. Using primary human HSCs, we demonstrated that miR-223 suppressed the fibrogenic program and cellular proliferation while promoting features of quiescent HSCs including lipid re-accumulation and retinol storage. Furthermore, induction of miR-223 in HSCs decreased cellular motility and contraction. Mechanistically, miR-223 negatively regulated expression of smooth muscle α-actin (α-SMA) and thus reduced cytoskeletal activity, which is known to promote amplification of fibrogenic signals. Restoration of α-SMA in miR-223-overexpressing HSCs alleviated the antifibrotic effects of miR-223. Finally, to explore the therapeutic potential of miR-233 in liver fibrosis, we generated co-cultured organoids of HSCs with Huh7 hepatoma cells and challenged them with acetaminophen (APAP) or palmitic acid (PA) to induce hepatotoxicity. We showed that ectopic expression of miR-223 in HSCs attenuated fibrogenesis in the two human organoid models of liver injury, suggesting its potential application in antifibrotic therapy.


Subject(s)
Actin Cytoskeleton , Hepatic Stellate Cells , MicroRNAs , Actin Cytoskeleton/metabolism , Cell Proliferation , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/metabolism , MicroRNAs/metabolism , Organoids/metabolism , Signal Transduction
10.
Biomed Res Int ; 2022: 2028082, 2022.
Article in English | MEDLINE | ID: mdl-35655474

ABSTRACT

Cervical cancer is rated to be the leading cause of cancer-related death in women worldwide. Since screening test and conventional treatments are less accessible for people in developing countries, an alternative use of medicinal plants exhibiting strong anticancer activities may be an affordable means to treat cervical cancer. Mitrephora chulabhorniana (MC) is the newly identified species; however, its biological functions including anticancer activities have been largely unexplored. Hence, in this study, we were interested in investigating anticancer effects of this plant on the human cervical cell line (HeLa). MC extract was profiled for phytochemicals by TLC. This plant was tested to contain alkaloids, flavonoids, and terpenes. HeLa cells were treated with MC extract to investigate the anticancer activities. Cytotoxicity and viability of cells treated with MC were determined by MTT assay and Trypan blue exclusion assay. Cell migration was tested by wound healing assay, and cell invasion was determined by Transwell assay. The level of caspase 7, caspase 9, and PARP was determined by western blot analysis. We found that the leaf extract of MC strongly reduced cancer cell survival rate. This finding was consistent with the discovery that the extract dramatically induced apoptosis of cervical cancer cells through the activation of caspase 7 and caspase 9 which consequently degraded PARP protein. Furthermore, MC extract at lower concentrations which were not cytotoxic to the cancer cells showed potent inhibitory activities against HeLa cervical cancer cell migration and invasion. Mitrephora chulabhorniana possesses its pharmacological properties in inhibiting cervical cancer cell migration/invasion and inducing apoptotic signaling. This accumulated information suggests that Mitrephora chulabhorniana may be a beneficial source of potential agents for cervical cancer treatment.


Subject(s)
Annonaceae , Uterine Cervical Neoplasms , Apoptosis , Caspase 7/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Line, Tumor , Female , HeLa Cells , Humans , Plant Extracts/chemistry , Poly(ADP-ribose) Polymerase Inhibitors , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism
11.
Sci Rep ; 11(1): 23796, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893659

ABSTRACT

Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aß), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aß-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aß42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Ferns/chemistry , Plant Extracts/pharmacology , Protein Aggregation, Pathological/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Behavior, Animal , Biological Products , Biomarkers , Disease Models, Animal , Drosophila , Gene Expression , Humans , Peptide Fragments/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy
12.
Biomed Pharmacother ; 143: 112229, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649355

ABSTRACT

Kaempferia parviflora (KP) has been used as folk medicine for curing various conditions, including anti-inflammatory diseases. However, anti-psoriatic effects in an aspect of suppression of NF-κB activation have not been explored. Therefore, our current study aimed to elucidate the anti-inflammation of KP in lipopolysaccharide (LPS)-induced RAW264.7 cells and anti-psoriatic effects of KP in cytokine-induced human keratinocytes, HaCaT cells. We discovered that KP extract significantly suppressed LPS-induced inflammation at both gene expression and protein production. Specifically, dramatic reduction of nitric oxide (NO) was explored by using Griess method. Consistently, data from RT-qPCR, ELISA, and western blot analysis confirmed that crucial inflammatory and psoriatic markers including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-17, IL-22, and IL-23 were significantly decreased by the action of KP. These events were associated with the results from immunofluorescence study and western blot analysis where the activation of NF-κB upon LPS stimulation was clearly inhibited by KP through its ability to suppress IκB-α degradation resulting in inhibition of NF-κB nuclear translocation. Furthermore, KP extract significantly inhibited LPS-stimulated phosphorylation of ERK1/2, JNK, and p38 in a dose-dependent manner, along with inhibition of ERK1/2 activation in both TNF-α- and EGF-induced HaCaT cells. Interestingly, HaCaT cells exposed to 15 µg/mL of KP also exhibited significant decrease of cell migration and proliferation. Our results revealed that KP extract has a potential to be developed as a promising agent for treating inflammation and psoriasis, in part through targeting the proliferation and the NF-κB pathways.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatologic Agents/pharmacology , Inflammation/drug therapy , Keratinocytes/drug effects , Macrophages/drug effects , Plant Extracts/pharmacology , Psoriasis/drug therapy , Zingiberaceae , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Dermatologic Agents/isolation & purification , HaCaT Cells , Humans , Inflammation/immunology , Inflammation/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Phosphorylation , Plant Extracts/isolation & purification , Psoriasis/immunology , Psoriasis/metabolism , RAW 264.7 Cells , Signal Transduction , Zingiberaceae/chemistry
13.
Plants (Basel) ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34371622

ABSTRACT

Zingiber ottensii (ZO) is a local plant in Thailand and has been used as a Thai traditional therapy for many conditions. ZO has been reported to exhibit many pharmacological effects, including anti-cancer activity. Nevertheless, its anti-cancer effects explored at the signaling level have not been elucidated in cervical cancer, which is one of the leading causes of fatality in females. We discovered that the essential oil of ZO significantly increased the apoptosis of human cervical cancer cells (HeLa) after 24 h of treatment in a concentration-dependent manner. Our data also clearly demonstrated that ZO essential oil reduced IL-6 levels in the culture supernatants of the cancer cells. Moreover, Western blot analysis clearly verified that cells were induced to undergo apoptotic death via caspase activation upon treatment with ZO essential oil. Interestingly, immunofluorescence studies and Western blot analyses showed that ZO essential oil suppressed epidermal growth factor (EGF)-induced pAkt and pERK1/2 signaling pathway activation. Together, our study demonstrates that ZO essential oil can reduce the proliferation and survival signaling of HeLa cervical cancer cells. Our study provides convincing data that ZO essential oil suppresses the growth and survival of cervical cancer cells, and it may be a potential choice for developing an anti-cancer agent for treating certain cervical cancers.

14.
Biomed Pharmacother ; 141: 111911, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328090

ABSTRACT

Ovarian clear cell carcinoma (OCCC) is an uncommon subtype of epithelial cell ovarian cancers (EOCs) that has poor response to conventional platinum-based therapy. Therefore, finding new potential therapeutic agents is required. Since inflammatory cytokine, tumor necrosis factor alpha (TNF-α), is strongly expressed in EOCs and associated with the level of tumor grade, disruption of this inflammation pathway may provide another potential target for OCCC treatment. We previously reported that Kaempferia parviflora (KP) extract decreased cell proliferation and induced apoptosis. However, the effects of KP on OCCC, especially the aspects related to inflammatory cytokines, have not been elucidated. Our current study demonstrated the effects of KP extract on cytokine production in TNF-α-induced OCCC TOV-21G cell line. This study showed that KP extract inhibited interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production at both transcription and translation levels via the suppression of nuclear factor-kappa B (NF-κB) signal transduction. In contrast, KP extract increased the expression of inhibitor kappa B (IκB) protein which may delay NF-κB translocation into the nucleus upon TNF-α activation. Moreover, the suppression of cytokines released from KP treated-TOV-21G reduced the migration of monocyte cell (THP-1). KP extract also exhibited the inhibition of IL-6 and MCP-1 production from THP-1 activated by lipopolysaccharides (LPS). Cells treated with KP extract exhibited a decrease in extracellular signal-regulated kinases (ERK1/2) and protein kinase B (AKT) phosphorylation and induced myeloid leukemia cell differentiation protein Mcl-1 (MCL-1) expression. Suppression of inflammatory cytokine and chemokine production and inhibition of tumor-associated macrophage (TAM) migration support the possibility of using KP for OCCC treatment.


Subject(s)
Chemokine CCL2/metabolism , NF-kappa B/metabolism , Ovarian Neoplasms/metabolism , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/toxicity , Zingiberaceae , Cell Movement/drug effects , Cell Movement/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Humans , NF-kappa B/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors
15.
Front Pharmacol ; 12: 628198, 2021.
Article in English | MEDLINE | ID: mdl-33995026

ABSTRACT

Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as "Triphala," which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.

16.
Biology (Basel) ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916174

ABSTRACT

Many medicinal plants have been used to treat wounds. Here, we revealed the potential wound healing effects of Curcuma amarissima (CA). Our cell viability assay showed that CA extract increased the viability of HaCaT cells that were cultured in the absence of serum. This increase in cell viability was proved to be associated with the pharmacological activities of CA extract in inducing cell proliferation. To further define possible molecular mechanisms of action, we performed Western blot analysis and immunofluorescence study, and our data demonstrated that CA extract rapidly induced ERK1/2 and Akt activation. Consistently, CA extract accelerated cell migration, resulting in rapid healing of wounded human keratinocyte monolayer. Specifically, the CA-induced increase of cell monolayer wound healing was blocked by the MEK inhibitor (U0126) or the PI3K inhibitor (LY294002). Moreover, CA extract induced the expression of Mcl-1, which is an anti-apoptotic protein, supporting that CA extract enhances human keratinocyte survival. Taken together, our study provided convincing evidence that Curcuma amarissima can promote proliferation and survival of human keratinocyte through stimulating the MAPK and PI3K/Akt signaling cascades. These promising data emphasize the possibility to develop this plant as a wound healing agent for the potential application in regenerative medicine.

17.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056961

ABSTRACT

Psoriasis is a complex inflammatory disease characterized by hyperproliferative keratinocyte caused by active PI3K/AKT signaling. TNF-α concentrated in the psoriatic lesions stimulates AKT activation. We previously discovered that oxyresveratrol inhibited inflammation via suppressing AKT phosphorylation, therefore oxyresveratrol may possess a conserved property to block AKT activation and proliferation in keratinocyte in response to TNF-α. Our current study proved that oxyresveratrol exhibited potent anti-proliferative effects against TNF-α. These effects are explained by the findings that oxyresveratrol could potentially inhibit TNF-α-stimulated AKT and GSK3-ß activation in a dose-dependent manner, and its inhibitory pattern was comparable to that of a specific PI3K inhibitor. Results from immunofluorescence supported that oxyresveratrol effectively inhibited AKT and GSK3-ß activation in individual cells upon TNF-α stimulation. Furthermore, functional assay confirmed that oxyresveratrol repressed the expansion of the HaCaT colony over 3 days, and this was caused by the ability of oxyresveratrol to induce cell cycle arrest at S and G2/M phases and the reduction in the expression of a proliferative marker (Ki-67) and a survival marker (MCL-1). Given the importance of TNF-α and the PI3K/AKT pathway in the psoriatic phenotype, we anticipate that oxyresveratrol, which targets the TNF-α-stimulated PI3K/AKT pathway, would represent a promising psoriasis therapy in the near future.

18.
Biomed Pharmacother ; 133: 111002, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33212374

ABSTRACT

Boesenbergia rotunda (BR) has long been used as tradition medicine. For its pharmacological effects on wound healing, previous studies in an animal model provided convincing results that the ethanolic extract from the rhizome of this plant can stimulate wound healing. However, the mechanism about how this plant promotes wound healing at the molecular level has not been elucidated. As a step towards the development of wound healing agents, our current study utilized a human keratinocyte cell line (HaCaT) as an in vitro model to define the potential molecular mechanisms of BR extract in enhancing wound-healing. Our HPLC results showed that BR extract contained kaempferol as one of its potential compounds. The extract strongly promoted wound healing of HaCaT cell monolayer. This effect was eventually defined to be regulated through the ability of BR extract to induce cell proliferation. At the signaling level, we discovered that BR extract rapidly activated ERK1/2 and Akt phosphorylation upon the addition of the extract. Additionally, our experiments where specific inhibitors of MEK (U0126) and PI3K (LY294002) were utilized verified that BR enhanced cell proliferation and wound healing through stimulating the MAPK and PI3K/Akt signal transduction pathways. Moreover, direct inhibition of keratinocyte DNA synthesis by mitomycin C (MMC) could completely block the proliferative effects of BR extract. Nevertheless, data from Transwell migration assay revealed that BR extract did not promote keratinocyte migration. Altogether, we provided more evidence that BR possesses its wound healing-promoting action through the activation of proliferation and survival pathways, and our study suggests that BR is an interesting candidate to be developed as a wound healing-promoting agent.


Subject(s)
Cell Proliferation/drug effects , Keratinocytes/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing/drug effects , Zingiberaceae , Cell Line , Enzyme Activation , Humans , Keratinocytes/enzymology , Keratinocytes/pathology , Phosphorylation , Plant Extracts/isolation & purification , Signal Transduction , Zingiberaceae/chemistry
19.
Int J Mol Sci ; 21(17)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842681

ABSTRACT

Oxyresveratrol (OXY), a major phytochemical component derived from several plants, has been proved to have several pharmacological properties. However, the role of OXY in regulating neuroinflammation is still unclear. Here, we focused mainly on the anti-neuroinflammatory effects at the cellular level of OXY in the interleukin-1 beta (IL-1ß)-stimulated HMC3 human microglial cell line. We demonstrated that OXY strongly decreased the release of IL-6 and MCP-1 from HMC3 cells stimulated with IL-1ß. Nevertheless, IL-1ß could not induce the secretion of TNF-α and CXCL10 in this specific cell line, and that OXY did not have any effects on reducing the basal level of these cytokines in the sample culture supernatants. The densitometry analysis of immunoreactive bands from Western blot clearly indicated that IL-1ß does not trigger the nuclear factor-kappa B (NF-κB) signaling. We discovered that OXY exerted its anti-inflammatory role in IL-1ß-induced HMC3 cells by suppressing IL-1ß-induced activation of the PI3K/AKT/p70S6K pathway. Explicitly, the presence of OXY for only 4 h could strongly inhibit AKT phosphorylation. In addition, OXY had moderate effects on inhibiting the activation of ERK1/2. Results from immunofluorescence study further confirmed that OXY inhibited the phosphorylation of AKT and ERK1/2 MAPK upon IL-1ß stimulation in individual cells. These findings suggest that the possible anti-inflammatory mechanisms of OXY in IL-1ß-induced HMC3 cells are mainly through its ability to suppress the PI3K/AKT/p70S6K and ERK1/2 MAPK signal transduction cascades. In conclusion, our study provided accumulated data that OXY is able to suppress IL-1ß stimulation signaling in human microglial cells, and we believe that OXY could be a probable pharmacologic agent for altering microglial function in the treatment of neuroinflammation.


Subject(s)
Inflammation/drug therapy , Microglia/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Stilbenes/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Survival/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CXCL10/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/toxicity , Interleukin-6/metabolism , Microglia/metabolism , Microglia/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Cancers (Basel) ; 12(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549375

ABSTRACT

Ubiquilins or UBQLNs, members of the ubiquitin-like and ubiquitin-associated domain (UBL-UBA) protein family, serve as adaptors to coordinate the degradation of specific substrates via both proteasome and autophagy pathways. The UBQLN substrates reveal great diversity and impact a wide range of cellular functions. For decades, researchers have been attempting to uncover a puzzle and understand the role of UBQLNs in human cancers, particularly in the modulation of oncogene's stability and nucleotide excision repair. In this review, we summarize the UBQLNs' genetic variants that are associated with the most common cancers and also discuss their reliability as a prognostic marker. Moreover, we provide an overview of the UBQLNs networks that are relevant to cancers in different ways, including cell cycle, apoptosis, epithelial-mesenchymal transition, DNA repairs and miRNAs. Finally, we include a future prospective on novel ubiquilin-based cancer therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...