Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 68(11): 1510-20, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17466346

ABSTRACT

Catalysing the hydrolysis of terminal beta-galactosyl residues from carbohydrates, galactolipids, and glycoproteins, glycoside hydrolase family 35 (beta-galactosidases; BGALs) are widely distributed in plants and believed to play many key roles, including modification of cell wall components. Completion of the Arabidopsis thaliana genome sequencing project has, for the first time, allowed an examination of the total number, gene structure, and evolutionary patterns of all Family 35 members in a representative (model) angiosperm. Reiterative database searches established a multigene family of 17 members (designated BGAL1-BGAL17). Using these genes as query sequences, BLAST and Hidden Markov Model searches identified BGAL genes among 22 other eukaryotes, whose genomic sequences are known. The Arabidopsis (n=17) and rice (n=15) BGAL families were much larger than those of Chlamydomonas, fungi, and animals (n=0-4), and a lineage-specific expansion of BGAL genes apparently occurred after divergence of the Arabidopsis and rice lineages. All plant BGAL genes, with the exception of Arabidopsis BGAL17 and rice Os 9633.m04334, form a monophyletic group. Arabidopsis BGAL expression levels are much higher in mature leaves, roots, flowers, and siliques but are lower in young seedlings. BGAL8, BGAL11, BGAL13, BGAL14, and BGAL16 are expressed only in flowers. Catalytically active BGAL4 was produced in the E. coli and baculoviral expression systems, purified to electrophoretic homogeneity, and partially characterized. The purified enzyme hydrolyzed p- and o-nitrophenyl-beta-d-galactosides. It also cleaved beta-(1,3)-, beta-(1,4)-, and beta-(1,6)-linked galactobiosides and galactotriosides, showing a marked preference for beta-(1,3)- and beta-(1,4)-linkages.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genome, Plant , Genomics , beta-Galactosidase/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/classification , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Escherichia coli/genetics , Evolution, Molecular , Molecular Sequence Data , Multigene Family , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , beta-Galactosidase/classification , beta-Galactosidase/metabolism , beta-Galactosidase/physiology
2.
Phytochemistry ; 67(15): 1651-60, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16814332

ABSTRACT

In higher plants, beta-glucosidases belonging to glycoside hydrolase (GH) Family 1 have been implicated in several fundamental processes including lignification. Phylogenetic analysis of Arabidopsis thaliana GH Family 1 has revealed that At1g61810 (BGLU45), At1g61820 (BGLU46), and At4g21760 (BGLU47) cluster with Pinus contorta coniferin beta-glucosidase, leading to the hypothesis that their respective gene products may be involved in lignification by hydrolysing monolignol glucosides. To test this hypothesis, we cloned cDNAs encoding BGLU45 and BGLU46 and expressed them in Pichia pastoris. The recombinant enzymes were purified to apparent homogeneity by ammonium sulfate fractionation and hydrophobic interaction chromatography. Among natural substrates tested, BGLU45 exhibited narrow specificity toward the monolignol glucosides syringin (K(m), 5.1mM), coniferin (K(m), 7mM), and p-coumaryl glucoside, with relative hydrolytic rates of 100%, 87%, and 7%, respectively. BGLU46 exhibited broader substrate specificity, cleaving salicin (100%), p-coumaryl glucoside (71%; K(m), 2.2mM), phenyl-beta-d-glucoside (62%), coniferin (8%), syringin (6%), and arbutin (6%). Both enzymes also hydrolysed p- and o-nitrophenyl-beta-d-glucosides. Using RT-PCR, we showed that BGLU45 and BGLU46 are expressed strongly in organs that are major sites of lignin deposition. In inflorescence stems, both genes display increasing levels of expression from apex to base, matching the known increase in lignification. BGLU45, but not BGLU46, is expressed in siliques, whereas only BGLU46 is expressed in roots. Taken together with recently described monolignol glucosyltransferases [Lim et al., J. Biol. Chem. (2001) 276, 4344-4349], our enzymological and molecular data support the possibility of a monolignol glucoside/beta-glucosidase system in Arabidopsis lignification.


Subject(s)
Arabidopsis/enzymology , Glucosides/metabolism , beta-Glucosidase/metabolism , Base Sequence , DNA Primers , Hydrolysis , Phylogeny , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , beta-Glucosidase/isolation & purification
3.
Protein Expr Purif ; 47(1): 118-27, 2006 May.
Article in English | MEDLINE | ID: mdl-16427312

ABSTRACT

An extracellular exo-beta-(1,3)-glucanase (designated EXG1) was purified to apparent homogeneity from Pichia pastoris X-33 cultures by ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration. The native enzyme is unglycosylated and monomeric with a molecular mass of approximately 47kDa. At its optimal pH of 6.0, the enzyme shows highest activity among physiological substrates toward laminarin (apparent Km, 3.5 mg/ml; Vmax, 192 micromole glucose produced/min/mg protein) but also hydrolyzes amygdalin and esculin, and the chromogenic substrates p-nitrophenyl-beta-D-glucopyranoside and p-nitrophenyl-beta-D-xylopyranoside. The P. pastoris EXG1 gene was cloned by a PCR-based strategy using genomic DNA as template. This intronless gene predicts an ORF that encodes a primary translation product of 414 amino acids. We believe that this preproprotein is processed sequentially by signal peptidase and a Kex2-like endoprotease to yield a mature protein of 392 amino acids (45,376 Da; pI, 4.46) that shares 36-64% amino acid identity with other yeast exo-beta-(1,3)-glucanases belonging to Glycoside Hydrolase Family 5. It also possesses the eight invariant residues and signature pattern [LIV]-[LIVMFYWGA](2)-[DNEQG]-[LIVMGST]-X-N-E-[PV]-[RHDNSTLIVFY] shown by all Family 5 members. Overexpression of the cloned EXG1 gene in Pichia cells, followed by Ni-CAM HC resin chromatography, yielded milligram quantities of homogeneous recombinant EXG1 in active form for further characterization studies.


Subject(s)
Extracellular Space/enzymology , Gene Expression Regulation, Bacterial/physiology , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/isolation & purification , Pichia/enzymology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli/genetics , Extracellular Space/genetics , Glucan 1,3-beta-Glucosidase/chemistry , Glucan 1,3-beta-Glucosidase/physiology , Molecular Sequence Data , Pichia/genetics , Sequence Alignment
4.
Plant Physiol ; 129(3): 1252-64, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12114579

ABSTRACT

In black cherry (Prunus serotina Ehrh.) seed homogenates, (R)-amygdalin is degraded to HCN, benzaldehyde, and glucose by the sequential action of amygdalin hydrolase (AH), prunasin hydrolase (PH), and mandelonitrile lyase. Leaves are also highly cyanogenic because they possess (R)-prunasin, PH, and mandelonitrile lyase. Taking both enzymological and molecular approaches, we demonstrate here that black cherry PH is encoded by a putative multigene family of at least five members. Their respective cDNAs (designated Ph1, Ph2, Ph3, Ph4, and Ph5) predict isoforms that share 49% to 92% amino acid identity with members of glycoside hydrolase family 1, including their catalytic asparagine-glutamate-proline and isoleucine-threonine-glutamate-asparagine-glycine motifs. Furthermore, consistent with the vacuolar/protein body location and glycoprotein character of these hydrolases, their open reading frames predict N-terminal signal sequences and multiple potential N-glycosylation sites. Genomic sequences corresponding to the open reading frames of these PHs and of the previously isolated AH1 isoform are interrupted at identical positions by 12 introns. Earlier studies established that native AH and PH display strict specificities toward their respective glucosidic substrates. Such behavior was also shown by recombinant AH1, PH2, and PH4 proteins after expression in Pichia pastoris. Three amino acid moieties that may play a role in conferring such aglycone specificities were predicted by structural modeling and comparative sequence analysis and tested by introducing single and multiple mutations into isoform AH1 by site-directed mutagenesis. The double mutant AH ID (Y200I and G394D) hydrolyzed prunasin at approximately 150% of the rate of amygdalin hydrolysis, whereas the other mutations failed to engender PH activity.


Subject(s)
Prunus/genetics , beta-Glucosidase/genetics , Aldehyde-Lyases/metabolism , Amino Acid Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Exons , Genes/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Introns , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Molecular Sequence Data , Multigene Family/genetics , Mutation , Nitriles/metabolism , Phylogeny , Plant Leaves/enzymology , Plant Shoots/enzymology , Prunus/enzymology , Seeds/enzymology , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Substrate Specificity , beta-Glucosidase/isolation & purification , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...