Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823930

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Amorphophallus , Mannans , Mannans/chemistry , Mannans/isolation & purification , Humans , Amorphophallus/chemistry , Animals , Dietary Fiber/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Dietary Supplements , Prebiotics , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
2.
Future Sci OA ; 10(1): FSO922, 2024.
Article En | MEDLINE | ID: mdl-38841181

Aim: Photobiomodulation involves the use of low-level light therapy or near-infrared light therapy found to be useful in the treatment of a wide range of neurological diseases. Objective: The aim is to review the mechanism and clinical applications of photobiomodulation therapy (PBMT) in managing Alzheimer's disease. Methods: To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. Results: PBMT elicits reduction of beta-amyloid plaque, restoration of mitochondrial function, anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. Conclusion: The PBMT could be helpful in patients non-responsive to traditional pharmacological therapy providing significant aid in the management of Alzheimer's disease when introduced into the medical field.


Alzheimer's disease (AD) is an incurable progressive neurodegenerative disease clinically manifested with a decline in cognitive function. To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. PBMT elicits various mechanisms such as reduction of beta-amyloid plaque, Restoration of mitochondrial function and maintenance the homeostasis, and anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. The PBMT could be helpful in patients who are non-responsive to conventional pharmacological therapy. This therapy might provide significant aid in the management of AD when introduced into the medical field. However, it requires various intensive research to be conducted for further conclusion.

3.
Curr Med Chem ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38847381

Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified via either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient's individuality. The bioactive compoundsfortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells via exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.

4.
EXCLI J ; 23: 534-569, 2024.
Article En | MEDLINE | ID: mdl-38741726

Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).

5.
Article En | MEDLINE | ID: mdl-38706354

The meninges serve as a protective layer, and the fluid around the brain and spinal cord can become inflamed, known as meningitis. Lipid-based pharmaceutical formulations, by their high lipophilicity, can negotiate the Blood-Brain Barrier (BBB). The current mode of treatment of meningitis is mainly through antibiotics, which, at best, is partially effective. The success of antibiotic therapy depends on several factors, for example, the difficulty of reaching the infection site, maintaining proper concentrations of the drug after crossing the BBB, and finally, its efficacy in preventing recurrent infection. In this context, interest has focused on organic and inorganic nanostructures for meningitis and transporting antibiotics to the selected region through the BBB. A focus has also been placed on several polymeric nanotechnology techniques for detecting various types of meningitis. This review focuses on nano interventions and their most recent meningitis treatments using nanotechnology.

6.
Med Oncol ; 41(6): 145, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727885

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Antineoplastic Agents , Drug Delivery Systems , Neoplasms , Polyelectrolytes , Humans , Polyelectrolytes/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Precision Medicine/methods
7.
Article En | MEDLINE | ID: mdl-38721838

Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.

8.
J Biomed Mater Res A ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721841

The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.

9.
ACS Omega ; 9(12): 13534-13555, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38559954

Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 µm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.

10.
Pharm Nanotechnol ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38616760

BACKGROUND: Dementia associated with Alzheimer's disease (AD) is a neurological disorder. AD is a progressive neurodegenerative condition that predominantly impacts the elderly population, although it can also manifest in younger people through the impairment of cognitive functions, such as memory, cognition, and behaviour. Donepezil HCl and Memantine HCl are encapsulated in Nanostructured Lipid Carriers (NLCs) to prolong systemic circulation and minimize the systemic side effects. OBJECTIVE: This work explores the use of data mining tools to optimize the formulation of NLCs comprising of Donepezil HCl and Memantine HCl for transdermal drug delivery. Neuroprotective drugs and excipients are utilized for protecting the nervous system against damage or degeneration. METHOD: The NLCs were formulated using a high-speed homogenization technique followed by ultrasonication. NLCs were optimized using Box Behnken Design (BBD) in Design Expert Software and artificial neural network (ANN) in IBM SPSS statistics. The independent variables included the ratio of solid lipid to liquid lipid, the percentage of surfactant, and the revolutions per minute (RPM) of the high-speed homogenizer. RESULTS: The NLCs that were formulated had a mean particle size ranging from 67.0±0.45 to 142.4±0.52nm. Both drugs have a %EE range over 75%, and Zeta potential was determined to be - 26±0.36mV. CryoSEM was used to do the structural study. The permeation study showed the prolonged release of the formulation. CONCLUSION: The results indicate that NLCs have the potential to be a carrier for transporting medications to deeper layers of the skin and reaching systemic circulation, making them a suitable formulation for the management of Dementia. Both ANN and BBD techniques are effective tools for systematically developing and optimizing NLC formulation.

11.
Article En | MEDLINE | ID: mdl-38646682

Central nervous system disorders are prevalent, profoundly debilitating, and poorly managed. Developing innovative treatments for these conditions, including Alzheimer's disease, could significantly improve patients' quality of life and reduce the future economic burden on healthcare systems. However, groundbreaking drugs for central nervous system disorders have been scarce in recent years, highlighting the pressing need for advancements in this field. One significant challenge in the realm of nanotherapeutics is ensuring the precise delivery of drugs to their intended targets due to the complex nature of Alzheimer's disease. Although numerous therapeutic approaches for Alzheimer's have been explored, most drug candidates targeting amyloid-ß have failed in clinical trials. Recent research has revealed that tau pathology can occur independently of amyloid-ß and is closely correlated with the clinical progression of Alzheimer's symptoms. This discovery suggests that tau could be a promising therapeutic target. One viable approach to managing central nervous system disorders is the administration of nanoparticles to neurons, intending to inhibit tau aggregation by directly targeting p-tau. In Alzheimer's disease, beta-amyloid plaques and neurofibrillary tau tangles hinder neuron transmission and function. The disease also triggers persistent inflammation, compromises the blood-brain barrier, leads to brain shrinkage, and causes neuronal loss. While current medications primarily manage symptoms and slow cognitive decline, there is no cure for Alzheimer's.

12.
Curr Med Chem ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685773

The review explores the enhancement of therapeutic efficacy through the innovative use of polymeric molecular envelope technology (MET). It delves into the diverse methods employed to achieve superior therapeutic outcomes, shedding light on strategies for improving drug delivery and bioavailability. MET is a promising approach to improve the solubility and bioavailability of poorly water-soluble drugs. This technology involves the use of a molecular envelope of cyclic oligosaccharides called cyclodextrins, which is a supramolecular assembly of amphiphilic molecules that encapsulate and solubilize hydrophobic drug molecules. This can further improve the solubility of the drug by increasing its surface area and reducing its crystallinity. Moreover, MET also protects the drug from degradation and enhances its permeability across biological membranes. Furthermore, the review thoroughly examines the MET, including its methods of preparation, applications in drug encapsulation, and the evaluation of its potential to optimize therapeutic outcomes. By adopting current research and key findings, this review provides valuable insights into the transformative potential of polymeric molecular envelope technology for advancing the field of therapeutics.

13.
ACS Pharmacol Transl Sci ; 7(4): 967-990, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38633600

Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.

14.
Acta Biomater ; 180: 1-17, 2024 May.
Article En | MEDLINE | ID: mdl-38604468

This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.


Nanomedicine , Humans , Vaccines, DNA/adverse effects
15.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38543115

In recent years, due to their distinctive and adaptable therapeutic effects, many natural bioactive compounds have been commonly used to treat diseases. Their limited solubility, low bioavailability, inadequate gastrointestinal tract stability, high metabolic rate, and shorter duration of action limited their pharmaceutical applications. However, those can be improved using nanotechnology to create various drug delivery systems, including lipid-based nanoparticles, to adjust the compounds' physicochemical properties and pharmacokinetic profile. Because of the enormous technical advancements made in the fundamental sciences and the physical and chemical manipulation of individual atoms and molecules, the subject of nanotechnology has experienced revolutionary growth. By fabricating certain functionalized particles, nanotechnology opens an innovative horizon in research and development for overcoming restrictions, including traditional medication administration systems. Nanotechnology-driven bioactive compounds are certain to have a high impact and clinical value for current and future uses. Lipid-based nanotechnologies were shown to deliver a range of naturally occurring bioactive compounds with decent entrapment potential and stability, a successfully controlled release, increased bioavailability, and intriguing therapeutic activity. This review outlines bioactive compounds such as paclitaxel, curcumin, rhodomyrtone, quercetin, kaempferol, resveratrol, epigallocatechin-3-gallate, silymarin, and oridonin, fortified within either a natural or synthetic lipid-based drug delivery system based on nanotechnology and their evaluation and clinical considerations.

16.
Pharmaceutics ; 16(3)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38543191

Prostate cancer is one of the most life-threatening disorders that occur in males. It has now become the third most common disease all over the world, and emerging cases and spiking mortality rates are becoming more challenging day by day. Several approaches have been used to treat prostate cancer, including surgery, radiation therapy, chemotherapy, etc. These are painful and invasive ways of treatment. Primarily, chemotherapy has been associated with numerous drawbacks restricting its further application. The majority of prostate cancers have the potential to become castration-resistant. Prostate cancer cells exhibit resistance to chemotherapy, resistance to radiation, ADT (androgen-deprivation therapy) resistance, and immune stiffness as a result of activating tumor-promoting signaling pathways and developing resistance to various treatment modalities. Nanomedicines such as liposomes, nanoparticles, branched dendrimers, carbon nanotubes, and quantum dots are promising disease management techniques in this context. Nanomedicines can target the drugs to the target site and enhance the drug's action for a prolonged period. They may also increase the solubility and bioavailability of poorly soluble drugs. This review summarizes the current data on nanomedicines for the prevention and treatment of prostate cancer. Thus, nanomedicine is pioneering in disease management.

17.
Curr Med Chem ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38549530

Nanoparticles have been crucial in redesigning tumour eradication techniques, and recent advances in cancer research have accelerated the creation and integration of multifunctional nanostructures. In the fight against treatment resistance, which has reduced the effectiveness of traditional radiation and chemotherapy, this paradigm change is of utmost importance. Graphene oxide (GO) is one of several nanoparticles made of carbon that has made a splash in the medical field. It offers potential new ways to treat cancer thanks to its nanostructures, which can precisely transfer genetic elements and therapeutic chemicals to tumour areas. Encapsulating genes, protecting them from degradation, and promoting effective genetic uptake by cancer cells are two of GO nanostructures' greatest strengths, in addition to improving drug pharmacokinetics and bioavailability by concentrating therapeutic compounds at particular tumour regions. In addition, photodynamic treatment (PDT) and photothermal therapy (PTT), which use GO nanoparticles to reduce carcinogenesis, have greatly slowed tumour growth due to GO's phototherapy capabilities. In addition to their potential medical uses, GO nanoparticles are attractive vaccine candidates due to their ability to stimulate cellular and innate immunity. These nanoparticles can be used to detect, diagnose, and eradicate cancer because they respond to certain stimuli. The numerous advantages of GO nanoparticles for tumour eradication are attributed in large part to their primary route of internalisation through endocytosis, which guarantees accurate delivery to target locations. The revolutionary potential of multifunctional nanostructures in cancer treatment is highlighted in this extensive compendium that examines current oncological breakthroughs.

18.
ACS Omega ; 9(8): 8615-8631, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38434844

Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.

19.
Saudi Pharm J ; 32(4): 102002, 2024 Apr.
Article En | MEDLINE | ID: mdl-38439951

Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.

20.
ACS Omega ; 9(9): 10353-10370, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38463259

Aim: Targeted delivery of chemotherapeutics by functionalized nanoparticles exhibits a wonderful prospect for cancer treatment. The main objective of this research was to develop folate receptor-targeted silibinin (SB)-loaded inhalable polymeric nanoparticles (FA-CS-SB-NPs) for the treatment of lung cancer. Method: The qbD approach was implemented to prepare SB-loaded nanoparticles. Folic acid was conjugated by electrostatic conjugation in an optimized batch. The therapeutic potentials of formulations were determined using a lung cancer cell-bearing rat model. Result: Optimized formulation exhibited a spherical surface with a mean particle size of 275 ± 1.20 nm, a PDI of 0.234 ± 0.07, a ζ-potential of 32.50 ± 0.21, an entrapment efficiency of 75.52 ± 0.87%, and a CDR of 63.25 ± 1.21% at 48 h. Aerodynamic behaviors such as the mass median aerodynamic diameter (MMAD) and geometric size distribution (GSD) were found to be 2.75 ± 1.02 and 3.15 ± 0.88 µm, respectively. After 24 h of incubation with FA-CS-SB-NPs, the IC50 value was found to be 24.5 g/mL. FA-SB-CS-NPs maintained a significantly higher deposition of SB in lung tissues. Conclusions: Thus, the noninvasive nature and target specificity of FA-CS-SB-NPs pave the way for pulmonary delivery for treating lung cancer.

...