Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 202: 116374, 2024 May.
Article in English | MEDLINE | ID: mdl-38663344

ABSTRACT

A comparative assessment of heavy metal accumulation potential in four distinct marine benthic bioindicators: the bivalve Perna perna, the sponge Callyspongia fibrosa, the sea urchin Tripneustes gratilla, and the gastropod Purpura bufo were conducted. These organisms were collected from the same location, and the concentration of ten heavy metals was analyzed in water, sediment and various body parts of the organisms. The bioaccumulation potential was evaluated using the bio-water accumulation factor and bio-sediment accumulation factor. There was significant variation in the bioaccumulation potential of each organism with respect to different metals. The sponge proved to be a reliable indicator of Cd with a highest concentration of 2.60 µg/g. Sea urchin accumulated high concentrations of Cr (16.98 µg/g) and Pb (4.80 µg/g), whereas Cu was predominant (21.05 µg/g) in gastropod, followed by bivalve (17.67 µg/g). The concentration of metals in hard parts was found to be lower than in the tissues.


Subject(s)
Bivalvia , Environmental Monitoring , Gastropoda , Metals, Heavy , Porifera , Sea Urchins , Water Pollutants, Chemical , Animals , Metals, Heavy/analysis , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Gastropoda/metabolism , Bivalvia/metabolism , Porifera/metabolism , Geologic Sediments/chemistry
3.
Sci Rep ; 14(1): 7587, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555354

ABSTRACT

The mining industry confronts significant challenges in mitigating airborne particulate matter (PM) pollution, necessitating innovative approaches for effective monitoring and prediction. This research focuses on the design and development of an Internet of Things (IoT)-based real-time monitoring system tailored for PM pollutants in surface mines, specifically PM 1.0, PM 2.5, PM 4.0, and PM 10.0. The novelty of this work lies in the integration of IoT technology for real-time measurement and the application of machine learning (ML) techniques for accurate prediction based on recorded dust pollutants data. The study's findings indicate that PM 1.0 pollutants exhibited the highest concentration in the atmosphere of the ball clay surface mine sites, with the stockyard site registering the maximum levels of PM pollutants (28.45 µg/m3, 27.89 µg/m3, 26.17 µg/m3, and 27.24 µg/m3, respectively) due to the dry nature of clay materials. Additionally, the research establishes four ML models-Decision Tree (DT), Gradient Boosting Regression (GBR), Random Forest (RF), and Linear Regression (LR)-for predicting PM pollutant concentrations. Notably, Random Forest demonstrates superior performance with the lowest Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) at 1.079 and 1.497, respectively. This comprehensive solution, combining IoT-based monitoring and ML-based prediction, contributes to sustainable mining practices, safeguarding worker well-being, and preserving the environment.

4.
Sci Rep ; 14(1): 3650, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351203

ABSTRACT

Composites are driving positive developments in the automobile sector. In this study investigated the use of composite fins in radiators using computational fluid dynamics (CFD) to analyze the fluid-flow phenomenon of nanoparticles and hydrogen gas. Our world is rapidly transforming, and new technologies are leading to positive revolutions in today's society. In this study successfully analyzed the entire thermal simulation processes of the radiator, as well as the composite fin arrangements with stress efficiency rates. The study examined the velocity path, pressure variations, and temperature distribution in the radiator setup. As found that nanoparticles and composite fins provide superior thermal heat rates and results. The combination of an aluminum radiator and composite fins in future models will support the control of cooling systems in automotive applications. The final investigation statement showed a 12% improvement with nanoparticles, where the velocity was 1.61 m/s and the radiator system's pressure volume was 2.44 MPa. In the fin condition, the stress rate was 3.60 N/mm2.

5.
Sci Rep ; 14(1): 543, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177199

ABSTRACT

The study intends to calibrate the compression ignition (CI) engine split injection parameters as efficiently. The goal of the study is to find the best split injection parameters for a dual-fuel engine that runs on 40% ammonia and 60% biodiesel at 80% load and a constant speed of 1500 rpm with the CRDi system. To optimize and forecast split injection settings, the RSM and an ANN model are created. Based on the experimental findings, the RSM optimization research recommends a per-injection timing of 54 °CA bTDC, a main injection angle of 19 °CA bTDC, and a pilot mass of 42%. As a result, in comparison to the unoptimized map, the split injection optimized calibration map increases BTE by 12.33% and decreases BSEC by 6.60%, and the optimized map reduces HC, CO, smoke, and EGT emissions by 15.68%, 21.40%, 18.82, and 17.24%, while increasing NOx emissions by 15.62%. RSM optimization with the most desirable level was selected for map development, and three trials were carried out to predict the calibrated map using ANN. According to the findings, the ANN predicted all responses with R > 0.99, demonstrating the real-time reproducibility of engine variables in contrast to the RSM responses. The experimental validation of the predicted data has an error range of 1.03-2.86%, which is acceptable.

SELECTION OF CITATIONS
SEARCH DETAIL