Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Handb Exp Pharmacol ; 282: 25-39, 2023.
Article in English | MEDLINE | ID: mdl-37439843

ABSTRACT

Because women have been excluded from most clinical trials, assessment of sex differences in pharmacokinetics is available for a minority of currently prescribed drugs. In a 2020 analysis, substantial pharmacokinetic (PK) sex differences were established for 86 drugs: women given the same drug dose as men routinely generated higher blood concentrations and longer drug elimination times than men. 96% of drugs with higher PK values in women were associated with a higher incidence of adverse drug reactions (ADRs) in women than men; in the small number of instances when PKs of men exceeded those of women, this sex difference positively predicted male-biased ADRs in only 29% of cases. The absence of sex-stratified PK information for many medications raises the concern that sex differences in pharmacokinetics may be widespread and of clinical significance, contributing to sex-specific patterns of ADRs. Administering equal drug doses to women and men neglects sex differences in pharmacokinetics and body weight, risks overmedication of women, and contributes to female-biased ADRs. Evidence-based dosing adjustments are recommended to counteract this sex bias.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Sex Characteristics , Humans , Male , Female , Body Weight , Pharmacokinetics , Sex Factors
2.
J Am Assoc Lab Anim Sci ; 62(1): 38-47, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36755208

ABSTRACT

Insects are potential disease vectors for research animals. Therefore, implementing an effective pest control program is an essential component of any animal care and use program. The Guide for the Care and Use of Laboratory Animals emphasizes the humane use of traps; however, insect traps commonly use glue that can entrap escaped research mice, leading to their potential distress and injury. This situation is challenging for research facilities attempting to identify insect populations. In an effort to improve pest control in animal facilities, we sought to characterize the behavioral interactions of mice with common vermin traps. Three experiments using different combinations of traps (glue trap, live mouse trap with a clear viewing window, and live mouse trap with a red-tinted viewing window) were used in multiple behavioral testing arenas to address these questions. Experiments 1 and 2 were performed in a small arena, and Experiment 3 was performed in a simulated mouse housing room. Dependent measures included exploration of the test environment, grooming behavior, time spent near each trap, and latency to capture. Results indicate that mice were captured significantly more quickly by live traps than by glue traps, and were far more likely to enter a live trap as compared with a glue trap. Mice did not appear to differentiate between clear or red-tinted window live traps. Taken together, the results indicate that deploying both a live trap and a glue trap will allow humane capture of escaped mice yet will also capture insects in the same environment.


Subject(s)
Pest Control , Animals , Mice , Pest Control/instrumentation , Insecta , Behavior, Animal
3.
J Biol Rhythms ; 37(6): 631-654, 2022 12.
Article in English | MEDLINE | ID: mdl-36380564

ABSTRACT

Circadian rhythms provide daily temporal structure to cellular and organismal biological processes, ranging from gene expression to cognition. Higher-frequency (intradaily) ultradian rhythms are similarly ubiquitous but have garnered far less empirical study, in part because of the properties that define them-multimodal periods, non-stationarity, circadian harmonics, and diurnal modulation-pose challenges to their accurate and precise quantification. Wavelet analyses are ideally suited to address these challenges, but wavelet-based measurement of ultradian rhythms has remained largely idiographic. Here, we describe novel analytical approaches, based on discrete and continuous wavelet transforms, which permit quantification of rhythmic power distribution across a broad ultradian spectrum, as well as precise identification of period within empirically determined ultradian bands. Moreover, the aggregation of normalized wavelet matrices allows group-level analyses of experimental treatments, thereby circumventing limitations of idiographic approaches. The accuracy and precision of these wavelet analyses were validated using in silico and in vivo models with known ultradian features. Experiments in male and female mice yielded robust and repeatable measures of ultradian period and power in home cage locomotor activity, confirming and extending reports of ultradian rhythm modulation by sex, gonadal hormones, and circadian entrainment. Seasonal changes in day length modulated ultradian period and power, and exerted opposite effects in the light and dark phases of the 24 h day, underscoring the importance of evaluating ultradian rhythms with attention to circadian phase. Sex differences in ultradian rhythms were more prominent at night and depended on gonadal hormones in male mice. Thus, relatively straightforward modifications to the wavelet procedure allowed quantification of ultradian rhythms with appropriate time-frequency resolution, generating accurate, and repeatable measures of period and power which are suitable for group-level analyses. These analytical tools may afford deeper understanding of how ultradian rhythms are generated and respond to interoceptive and exteroceptive cues.


Subject(s)
Circadian Rhythm , Ultradian Rhythm , Female , Male , Mice , Animals , Activity Cycles , Wavelet Analysis , Locomotion
4.
Sci Rep ; 12(1): 14491, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008471

ABSTRACT

Trillions of microbial oscillators reside throughout the mammalian body, yet their contributions toward fundamental features of host circadian rhythms (CRs) have not been characterized. Here, we demonstrate that the microbiome contributes to host CRs in activity and thermoregulation. Mice devoid of microbes (germ-free, GF) exhibited higher-amplitude CRs in a light-dark cycle and longer circadian periods in constant darkness. Circadian entrainment to food was greater in GF mice, but resetting responses to simulated jet-lag were unaffected. Microbial transplantation with cecal contents of conventionally-raised mice normalized CRs of GF mice, indicating that the concurrent activity of gut microbes modulates host circadian networks. Obesogenic effects of high-fat diet were absent in GF mice, but some circadian-disruptive effects persisted. Transkingdom (host-microbe) interactions affect circadian period and entrainment of CRs in diverse traits, and microbes alter interactions among light- and food-entrainable circadian processes in the face of environmental (light, diet) perturbations.


Subject(s)
Circadian Rhythm , Microbiota , Animals , Body Temperature Regulation , Circadian Rhythm/physiology , Darkness , Light , Mammals , Mice , Photoperiod
5.
BMC Biol ; 20(1): 142, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705939

ABSTRACT

BACKGROUND: Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS: Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS: Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.


Subject(s)
Biology , Circadian Rhythm , Animals , Reproducibility of Results
6.
Article in English | MEDLINE | ID: mdl-34649925

ABSTRACT

Females have long been underrepresented in preclinical research and clinical drug trials. Directives by the U.S. National Institutes of Health have increased female participation in research protocols, although analysis of outcomes by sex remains infrequent. The long-held view that traits of female rats and mice are more variable than those of males is discredited, supporting equal representation of both sexes in most studies. Drug pharmacokinetic analysis reveals that, among subjects administered a standard drug dose, women are exposed to higher blood drug concentrations and longer drug elimination times. This contributes to increased adverse drug reactions in women and suggests that women are routinely overmedicated and should be administered lower drug doses than men. The past decade has seen progress in female inclusion, but key subsequent steps such as sex-based analysis and sex-specific drug dosing remain to be implemented.


Subject(s)
Biomedical Research , Sex Characteristics , Animals , Biomedical Research/methods , Female , Humans , Male , Mice , National Institutes of Health (U.S.) , Rats , United States
7.
J Biol Rhythms ; 37(1): 94-109, 2022 02.
Article in English | MEDLINE | ID: mdl-34931572

ABSTRACT

Circadian rhythms are generated by interlocked transcriptional-translational feedback loops of circadian clock genes and their protein products. Mice homozygous for a functional deletion in the Period-2 gene (Per2m/m mice) exhibit short free-running circadian periods and eventually lose behavioral circadian rhythmicity in constant darkness (DD). We investigated Per2m/m mice in DD for several months and identified a categorical sex difference in the dependence on Per2 for maintenance of circadian rhythms. Nearly all female Per2m/m mice became circadian arrhythmic in DD, whereas free-running rhythms persisted in 37% of males. Remarkably, with extended testing, Per2m/m mice did not remain arrhythmic in DD, but after varying intervals spontaneously recovered robust, free-running circadian rhythms, with periods shorter than those expressed prior to arrhythmia. Spontaneous recovery was strikingly sex-biased, occurring in 95% of females and 33% of males. Castration in adulthood resulted in male Per2m/m mice exhibiting female-like levels of arrhythmia in DD, but did not affect spontaneous recovery. The circadian pacemaker of many gonad-intact males, but not females, can persist in DD for long intervals without a functional PER2 protein; their circadian clocks may be in an unstable equilibrium, incapable of sustaining persistent coherent circadian organization, resulting in transient cycles of circadian organization and arrhythmia.


Subject(s)
Circadian Clocks , Period Circadian Proteins , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Darkness , Female , Male , Mice , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
8.
Biol Open ; 10(7)2021 07 15.
Article in English | MEDLINE | ID: mdl-34156069

ABSTRACT

Vector-borne pathogens cause many human infectious diseases and are responsible for high mortality and morbidity throughout the world. They can also cause livestock epidemics with dramatic social and economic consequences. Due to its high costs, vector-borne disease surveillance is often limited to current threats, and the investigation of emerging pathogens typically occurs after the reports of clinical cases. Here, we use high-throughput sequencing to detect and identify a wide range of parasites and viruses carried by mosquitoes from Cambodia, Guinea, Mali and the USA. We apply this approach to individual Anopheles mosquitoes as well as pools of mosquitoes captured in traps; and compare the outcomes of this assay when applied to DNA or RNA. We identified known human and animal pathogens and mosquito parasites belonging to a wide range of taxa, as well as DNA sequences from previously uncharacterized organisms. Our results also revealed that analysis of the content of an entire trap could be an efficient approach to monitor and identify rare vector-borne pathogens in large surveillance studies. Overall, we describe a high-throughput and easy-to-customize assay to screen for a wide range of pathogens and efficiently complement current vector-borne disease surveillance approaches.


Subject(s)
Arboviruses/isolation & purification , Culicidae/microbiology , Eukaryota/isolation & purification , High-Throughput Screening Assays/methods , Parasites/isolation & purification , Animals , Humans , Mosquito Vectors/microbiology
9.
Front Physiol ; 12: 592229, 2021.
Article in English | MEDLINE | ID: mdl-33746765

ABSTRACT

BACKGROUND: The sinoatrial/sinus node (SAN) is the primary pacemaker of the heart. In humans, SAN is surrounded by the paranodal area (PNA). Although the PNA function remains debated, it is thought to act as a subsidiary atrial pacemaker (SAP) tissue and become the dominant pacemaker in the setting of sinus node disease (SND). Large animal models of SND allow characterization of SAP, which might be a target for novel treatment strategies for SAN diseases. METHODS: A goat model of SND was developed (n = 10) by epicardially ablating the SAN and validated by mapping of emergent SAP locations through an ablation catheter and surface electrocardiogram (ECG). Structural characterization of the goat SAN and SAP was assessed by histology and immunofluorescence techniques. RESULTS: When the SAN was ablated, SAPs featured a shortened atrioventricular conduction, consistent with the location in proximity of atrioventricular junction. SAP recovery time showed significant prolongation compared to the SAN recovery time, followed by a decrease over a follow-up of 4 weeks. Like the SAN tissue, the SAP expressed the main isoform of pacemaker hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and Na+/Ca2+ exchanger 1 (NCX1) and no high conductance connexin 43 (Cx43). Structural characterization of the right atrium (RA) revealed that the SAN was located at the earliest activation [i.e., at the junction of the superior vena cava (SVC) with the RA] and was surrounded by the paranodal-like tissue, extending down to the inferior vena cava (IVC). Emerged SAPs were localized close to the IVC and within the thick band of the atrial muscle known as the crista terminalis (CT). CONCLUSIONS: SAN ablation resulted in the generation of chronic SAP activity in 60% of treated animals. SAP displayed development over time and was located within the previously discovered PNA in humans, suggesting its role as dominant pacemaker in SND. Therefore, SAP in goat constitutes a promising stable target for electrophysiological modification to construct a fully functioning pacemaker.

10.
Biol Sex Differ ; 11(1): 32, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503637

ABSTRACT

BACKGROUND: Women experience adverse drug reactions, ADRs, nearly twice as often as men, yet the role of sex as a biological factor in the generation of ADRs is poorly understood. Most drugs currently in use were approved based on clinical trials conducted on men, so women may be overmedicated. We determined whether sex differences in drug pharmacokinetics, PKs, predict sex differences in ADRs. METHODS: Searches of the ISI Web of Science and PubMed databases were conducted with combinations of the terms: drugs, sex or gender, pharmacokinetics, pharmacodynamics, drug safety, drug dose, and adverse drug reaction, which yielded over 5000 articles with considerable overlap. We obtained information from each relevant article on significant sex differences in PK measures, predominantly area under the curve, peak/maximum concentrations, and clearance/elimination rates. ADRs were identified from every relevant article and recorded categorically as female-biased, male-biased, or not sex-biased. RESULTS: For most of the FDA-approved drugs examined, elevated blood concentrations and longer elimination times were manifested by women, and these PKs were strongly linked to sex differences in ADRs. Of the 86 drugs evaluated, 76 had higher PK values in women; for 59 drugs with clinically identifiable ADRs, sex-biased PKs predicted the direction of sex-biased ADRs in 88% of cases. Ninety-six percent of drugs with female-biased PK values were associated with a higher incidence of ADRs in women than men, but only 29% of male-biased PKs predicted male-biased ADRs. Accessible PK information is available for only a small fraction of all drugs CONCLUSIONS: Sex differences in pharmacokinetics strongly predict sex-specific ADRs for women but not men. This sex difference was not explained by sex differences in body weight. The absence of sex-stratified PK information in public records for hundreds of drugs raises the concern that sex differences in PK values are widespread and of clinical significance. The common practice of prescribing equal drug doses to women and men neglects sex differences in pharmacokinetics and dimorphisms in body weight, risks overmedication of women, and contributes to female-biased adverse drug reactions. We recommend evidence-based dose reductions for women to counteract this sex bias.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacokinetics , Sex Characteristics , Adverse Drug Reaction Reporting Systems , Female , Humans , Male
11.
JCI Insight ; 5(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31941836

ABSTRACT

Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.


Subject(s)
Circadian Rhythm/physiology , Immunity , Sleep/physiology , Animals , Cell Differentiation , Circadian Rhythm/immunology , Education , Humans , Immune System , Microbiota/immunology , National Institutes of Health (U.S.) , Sleep/immunology , T-Lymphocytes , United States
12.
Brain Behav Immun ; 83: 33-43, 2020 01.
Article in English | MEDLINE | ID: mdl-31351184

ABSTRACT

Annual changes in day length enhance or suppress diverse aspects of immune function, giving rise to seasonal cycles of illness and mortality. The daily light-dark cycle also entrains circadian rhythms in immunity. Most published reports on immunological seasonality rely on measurements or interventions performed only at one point in the day. Because there can be no perfect matching of circadian phase across photoperiods of different duration, the manner in which these timescales interact to affect immunity is not understood. We examined whether photoperiodic changes in immune function reflect phenotypic changes that persist throughout the daily cycle, or merely reflect photoperiodic shifts in the circadian phase alignment of immunological rhythms. Diurnal rhythms in blood leukocyte trafficking, infection induced sickness responses, and delayed-type hypersensitivity skin inflammatory responses were examined at high-frequency sampling intervals (every 3 h) in Siberian hamsters (Phodopus sungorus) following immunological adaptation to summer or winter photoperiods. Photoperiod profoundly enhanced or suppressed immune function, in a trait-specific manner, and we were unable to identify a phase alignment of diurnal waveforms which eliminated these enhancing and suppressing effects of photoperiod. These results support the hypothesis that seasonal timescales affect immunity via mechanisms independent of circadian entrainment of the immunological circadian waveform.


Subject(s)
Circadian Rhythm/immunology , Immunity , Photoperiod , Seasons , Adaptation, Physiological/immunology , Animals , Cricetinae , Male , Phodopus/immunology
13.
Proc Natl Acad Sci U S A ; 116(26): 13116-13121, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31189592

ABSTRACT

Synthesis of triiodothyronine (T3) in the hypothalamus induces marked seasonal neuromorphology changes across taxa. How species-specific responses to T3 signaling in the CNS drive annual changes in body weight and energy balance remains uncharacterized. These experiments sequenced and annotated the Siberian hamster (Phodopus sungorus) genome, a model organism for seasonal physiology research, to facilitate the dissection of T3-dependent molecular mechanisms that govern predictable, robust, and long-term changes in body weight. Examination of the Phodopus genome, in combination with transcriptome sequencing of the hamster diencephalon under winter and summer conditions, and in vivo-targeted expression analyses confirmed that proopiomelanocortin (pomc) is a primary genomic target for the long-term T3-dependent regulation of body weight. Further in silico analyses of pomc promoter sequences revealed that thyroid hormone receptor 1ß-binding motif insertions have evolved in several genera of the Cricetidae family of rodents. Finally, experimental manipulation of food availability confirmed that hypothalamic pomc mRNA expression is dependent on longer-term photoperiod cues and is unresponsive to acute, short-term food availability. These observations suggest that species-specific responses to hypothalamic T3, driven in part by the receptor-binding motif insertions in some cricetid genomes, contribute critically to the long-term regulation of energy balance and the underlying physiological and behavioral adaptations associated with the seasonal organization of behavior.


Subject(s)
Energy Metabolism/physiology , Hypothalamus/metabolism , Phodopus/physiology , Photoperiod , Pro-Opiomelanocortin/metabolism , Acclimatization/physiology , Animals , Body Weight/physiology , Cold Temperature/adverse effects , Computational Biology , Down-Regulation , Eating/physiology , Evolution, Molecular , Female , Food Deprivation/physiology , Gene Expression Profiling , Male , Molecular Sequence Annotation , Neuropeptides/metabolism , Pro-Opiomelanocortin/genetics , Promoter Regions, Genetic/genetics , Protein Interaction Domains and Motifs/genetics , Receptors, Thyroid Hormone/metabolism , Seasons , Species Specificity , Triiodothyronine/administration & dosage , Triiodothyronine/metabolism , Weight Gain/drug effects , Weight Gain/physiology , Whole Genome Sequencing
14.
Horm Behav ; 110: 90-97, 2019 04.
Article in English | MEDLINE | ID: mdl-30826308

ABSTRACT

Seasonal changes in day length enhance and suppress immune function in a trait-specific manner. In Siberian hamsters (Phodopus sungorus) winter-like short days (SDs) increase blood leukocyte concentrations and adaptive T cell dependent immune responses, but attenuate innate inflammatory responses to simulated infections. Thyroid hormone (TH) signaling also changes seasonally and has been implicated in modulation of the reproductive axis by day length. Immunologically, TH administration in long days (LD) enhances adaptive immune responses in male Siberian hamsters, mimicking effects of SDs. This experiment tested the hypothesis that T3 is also sufficient to mimic the effects of SD on innate immune responses. Adult male hamsters housed in LDs were pretreated with triiodothyronine (T3; 1 µg, s.c.) or saline (VEH) daily for 6 weeks; additional positive controls were housed in SD and received VEH, after which cytokine, behavioral, and physiological responses to simulated bacterial infection (lipopolysaccharide; LPS) were evaluated. SD pretreatment inhibited proinflammatory cytokine mRNA expression (i.e. interleukin 1ß, nuclear factor kappa-light-chain-enhancer of activated B cells). In addition, the magnitude and persistence of anorexic and cachectic responses to LPS were also lower in SD hamsters, and LPS-induced inhibition of nest building behavior was absent in SD. T3 treatments failed to affect behavioral (food intake, nest building) or somatic (body mass) responses to LPS in LD hamsters, but one CNS cytokine response to LPS (e.g., hypothalamic TNFα) was augmented by T3. Together these data implicate thyroid hormone signaling in select aspects of innate immune responses to seasonal changes in day length.


Subject(s)
Behavior, Animal/drug effects , Cytokines/metabolism , Phodopus , Systemic Inflammatory Response Syndrome/pathology , Triiodothyronine/pharmacology , Animals , Anorexia/chemically induced , Anorexia/metabolism , Anorexia/pathology , Body Weight/physiology , Cricetinae , Disease Models, Animal , Hypothalamus/drug effects , Hypothalamus/metabolism , Illness Behavior/drug effects , Immunity, Innate/drug effects , Infections/chemically induced , Infections/metabolism , Infections/pathology , Lipopolysaccharides , Male , Phodopus/metabolism , Photoperiod , Reproduction/drug effects , Seasons , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/physiopathology
15.
Curr Biol ; 28(9): R553-R555, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29738728

ABSTRACT

A closer look at behavioral development in seasonally breeding rodents reveals more complex relations between puberty and social behavior than previously recognized. Pubertal hormones determine gross amounts of behavior, but play recedes and aggression emerges independently of puberty at predetermined chronological ages.


Subject(s)
Sexual Maturation , Social Change , Adolescent , Aggression , Breeding , Humans , Social Behavior
16.
Biol Sex Differ ; 8: 7, 2017.
Article in English | MEDLINE | ID: mdl-28203366

ABSTRACT

BACKGROUND: Females are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored. METHODS: These questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice. RESULTS: Contrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h). CONCLUSIONS: Although variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females.


Subject(s)
Periodicity , Sex Characteristics , Animals , Body Temperature , Female , Locomotion , Male , Mice, Inbred BALB C
17.
Physiol Behav ; 171: 165-174, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27998755

ABSTRACT

Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are impaired in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3h after light onset (ZT03) or 2h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing.


Subject(s)
Circadian Rhythm/physiology , Skin Diseases/physiopathology , Wound Healing/physiology , Animals , Chi-Square Distribution , Cricetinae , Disease Models, Animal , Female , Light , Motor Activity/physiology , Phodopus , Photoperiod , Skin Diseases/pathology , Skin Diseases/therapy , Time Factors
18.
Curr Opin Neurobiol ; 40: 150-154, 2016 10.
Article in English | MEDLINE | ID: mdl-27568859

ABSTRACT

Diverse mammalian ultradian rhythms (URs) with periods in the 1-6h range, are omnipresent at multiple levels of biological organization and of functional and adaptive significance. Specification of neuroendocrine substrates that generate URs remains elusive. The suprachiasmatic (SCN) and arcuate (ARC) nuclei of the rodent hypothalamus subserve several behavioral URs. Recently, in a major advance, dopaminergic signaling in striatal circuitry, likely at D2 receptors, has been implicated in behavioral and thermoregulatory URs of mice. We propose a neural network in which reciprocal communication among the SCN, the ARC and striatal dopaminergic circuitry modulates the period and waveform of behavioral and physiological URs.


Subject(s)
Behavior, Animal/physiology , Nerve Net/physiology , Ultradian Rhythm/physiology , Animals , Arcuate Nucleus of Hypothalamus/physiology , Dopaminergic Neurons/physiology , Hypothalamus/physiology , Signal Transduction/physiology
19.
Biol Sex Differ ; 7: 34, 2016.
Article in English | MEDLINE | ID: mdl-27468347

ABSTRACT

BACKGROUND: Not including female rats or mice in neuroscience research has been justified due to the variable nature of female data caused by hormonal fluctuations associated with the female reproductive cycle. In this study, we investigated whether female rats are more variable than male rats in scientific reports of neuroscience-related traits. METHODS: PubMed and Web of Science were searched for the period from August 1, 2010, to July 31, 2014, for articles that included both male and female rats and that measured diverse aspects of brain function. Only empirical articles using both male and female gonad-intact adult rats, written in English, and including the number of subjects (or a range) were included. This resulted in 311 articles for analysis. Data were extracted from digital images from article PDFs and from manuscript tables and text. The mean and standard deviation (SD) were determined for each data point and their quotient provided a coefficient of variation (CV) as a measure of trait-specific variability for each sex. Additionally, the results were coded for the type of research being measured (behavior, electrophysiology, histology, neurochemistry, and non-brain measures) and for the strain of rat. Over 6000 data points were extracted for both males and females. Subsets of the data were coded for whether male and female mean values differed significantly and whether animals were grouped or individually housed. RESULTS: Across all traits, there were no sex differences in trait variability, as indicated by the CV, and there were no sex differences in any of the four neuroscience categories, even in instances in which mean values for males and females were significantly different. Female rats were not more variable at any stage of the estrous cycle than male rats. There were no sex differences in the effect of housing conditions on CV. On one of four measures of non-brain function, females were more variable than males. CONCLUSIONS: We conclude that even when female rats are used in neuroscience experiments without regard to the estrous cycle stage, their data are not more variable than those of male rats. This is true for behavioral, electrophysiological, neurochemical, and histological measures. Thus, when designing neuroscience experiments to include both male and female rats, power analyses based on variance in male measures are sufficient to yield accurate numbers for females as well, even when the estrous cycle is not taken into consideration.

20.
J Biol Rhythms ; 30(6): 543-56, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26566981

ABSTRACT

The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.


Subject(s)
Body Temperature , Circadian Rhythm , Inflammation/physiopathology , Lipopolysaccharides , Motor Activity , Activity Cycles , Animals , Cricetinae , Female , Fever/etiology , Light , Phodopus , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL
...