Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; : e0335123, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953356

ABSTRACT

Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE: Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.

2.
PLoS Pathog ; 20(3): e1012031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427950

ABSTRACT

The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.


Subject(s)
Candida albicans , Candidiasis , Humans , Zinc , Epithelial Cells , Intestines
3.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38388771

ABSTRACT

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Subject(s)
Fungal Proteins , Mycotoxins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida albicans/metabolism , Mycotoxins/metabolism , Peptides/pharmacology , Peptides/metabolism
4.
mBio ; 15(3): e0340923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349176

ABSTRACT

Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.


Subject(s)
Candidiasis, Vulvovaginal , Candidiasis , Fungal Proteins , Single-Domain Antibodies , Humans , Female , Candidiasis, Vulvovaginal/microbiology , Quality of Life , Single-Domain Antibodies/metabolism , Candida albicans/metabolism , Candidiasis/microbiology , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...