Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5091, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876988

ABSTRACT

Living organisms synchronize their biological activities with the earth's rotation through the circadian clock, a molecular mechanism that regulates biology and behavior daily. This synchronization factually maximizes positive activities (e.g., social interactions, feeding) during safe periods, and minimizes exposure to dangers (e.g., predation, darkness) typically at night. Beyond basic circadian regulation, some behaviors like sleep have an additional layer of homeostatic control, ensuring those essential activities are fulfilled. While sleep is predominantly governed by the circadian clock, a secondary homeostatic regulator, though not well-understood, ensures adherence to necessary sleep amounts and hints at a fundamental biological function of sleep beyond simple energy conservation and safety. Here we explore sleep regulation across seven Drosophila species with diverse ecological niches, revealing that while circadian-driven sleep aspects are consistent, homeostatic regulation varies significantly. The findings suggest that in Drosophilids, sleep evolved primarily for circadian purposes. The more complex, homeostatically regulated functions of sleep appear to have evolved independently in a species-specific manner, and are not universally conserved. This laboratory model may reproduce and recapitulate primordial sleep evolution.


Subject(s)
Biological Evolution , Circadian Rhythm , Drosophila , Sleep , Species Specificity , Animals , Sleep/physiology , Drosophila/physiology , Circadian Rhythm/physiology , Homeostasis , Circadian Clocks/physiology , Male , Female
2.
Nature ; 630(8016): 392-400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811741

ABSTRACT

Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.


Subject(s)
Drosophila melanogaster , Intestines , Sex Characteristics , Trachea , Animals , Female , Male , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/physiology , Intestines/anatomy & histology , Trachea/anatomy & histology , Trachea/physiology , Organ Size , Muscles/anatomy & histology , Muscles/physiology , Ligands , Fibroblast Growth Factors/metabolism , Species Specificity
4.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37745467

ABSTRACT

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia , an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.

5.
HardwareX ; 15: e00443, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37795340

ABSTRACT

Behaviour is the ultimate output of neural circuit computations, and therefore its analysis is a cornerstone of neuroscience research. However, every animal and experimental paradigm requires different illumination conditions to capture and, in some cases, manipulate specific behavioural features. This means that researchers often develop, from scratch, their own solutions and experimental set-ups. Here, we present OptoPi, an open source, affordable (∼ £600), behavioural arena with accompanying multi-animal tracking software. The system features highly customisable and reproducible visible and infrared illumination and allows for optogenetic stimulation. OptoPi acquires images using a Raspberry Pi camera, features motorised LED-based illumination, Arduino control, as well as irradiance monitoring to fine-tune illumination conditions with real time feedback. Our open-source software (BioImageProcessing) can be used to simultaneously track multiple unmarked animals both in on-line and off-line modes. We demonstrate the functionality of OptoPi by recording and tracking under different illumination conditions the spontaneous behaviour of larval zebrafish as well as adult Drosophila flies and their first instar larvae, an experimental animal that due to its small size and transparency has classically been hard to track. Further, we showcase OptoPi's optogenetic capabilities through a series of experiments using transgenic Drosophila larvae.

6.
Curr Biol ; 33(15): R822-R825, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37552952

ABSTRACT

Fine sensory discrimination abilities are enabled by specific neural circuit architectures. A new study reveals how manipulating particular network parameters in the fly's memory centre, the mushroom body, alters sensory coding and discrimination.


Subject(s)
Perception , Animals , Nerve Net , Neurosciences/methods
7.
Proc Biol Sci ; 290(1997): 20230030, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122250

ABSTRACT

Tsetse flies significantly impact public health and economic development in sub-Saharan African countries by transmitting the fatal disease African trypanosomiasis. Unusually, instead of laying eggs, tsetse birth a single larva that immediately burrows into the soil to pupate. Where the female chooses to larviposit is, therefore, crucial for offspring survival. Previous laboratory studies suggested that a putative larval pheromone, n-pentadecane, attracts gravid female Glossina morsitans morsitans to appropriate larviposition sites. However, this attraction could not be reproduced in field experiments. Here, we resolve this disparity by designing naturalistic laboratory experiments that closely mimic the physical characteristics found in the wild. We show that gravid G. m. morsitans were neither attracted to the putative pheromone nor, interestingly, to pupae placed in the soil. By contrast, females appear to choose larviposition sites based on environmental substrate cues. We conclude that, among the many cues that likely contribute to larviposition choice in nature, substrate features are a main determinant, while we failed to find evidence for a role of pheromones.


Subject(s)
Tsetse Flies , Animals , Female , Pregnancy , Pheromones , Cues , Parturition , Larva
8.
Nat Rev Neurosci ; 23(12): 725-743, 2022 12.
Article in English | MEDLINE | ID: mdl-36289403

ABSTRACT

The wide variety of animal behaviours that can be observed today arose through the evolution of their underlying neural circuits. Advances in understanding the mechanisms through which neural circuits change over evolutionary timescales have lagged behind our knowledge of circuit function and development. This is particularly true for central neural circuits, which are experimentally less accessible than peripheral circuit elements. However, recent technological developments - including cross-species genetic modifications, connectomics and transcriptomics - have facilitated comparative neuroscience studies with a mechanistic outlook. These advances enable knowledge from two classically separate disciplines - neuroscience and evolutionary biology - to merge, accelerating our understanding of the principles of neural circuit evolution. Here we synthesize progress on this topic, focusing on three aspects of neural circuits that change over evolutionary time: synaptic connectivity, neuromodulation and neurons. By drawing examples from a wide variety of animal phyla, we reveal emerging principles of neural circuit evolution.


Subject(s)
Connectome , Neurosciences , Animals , Neurons/physiology , Nervous System
9.
Sci Rep ; 12(1): 15767, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131078

ABSTRACT

Crawling insects, when starved, tend to have fewer head wavings and travel in straighter tracks in search of food. We used the Drosophila melanogaster larva to investigate whether this flexibility in the insect's navigation strategy arises during early olfactory processing and, if so, how. We demonstrate a critical role for Keystone-LN, an inhibitory local neuron in the antennal lobe, in implementing head-sweep behavior. Keystone-LN responds to odor stimuli, and its inhibitory output is required for a larva to successfully navigate attractive and aversive odor gradients. We show that insulin signaling in Keystone-LN likely mediates the starvation-dependent changes in head-sweep magnitude, shaping the larva's odor-guided movement. Our findings demonstrate how flexibility in an insect's navigation strategy can arise from context-dependent modulation of inhibitory neurons in an early sensory processing center. They raise new questions about modulating a circuit's inhibitory output to implement changes in a goal-directed movement.


Subject(s)
Insulins , Olfactory Receptor Neurons , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Larva/physiology , Odorants , Olfactory Pathways , Olfactory Receptor Neurons/physiology , Perception
10.
Trends Neurosci ; 45(10): 713-715, 2022 10.
Article in English | MEDLINE | ID: mdl-35781173

ABSTRACT

In a recent study, Zhao et al. decipher how the olfactory system encodes human versus animal odors in the mosquito Aedes aegypti. By combining genome engineering, invivo calcium imaging, advanced chemistry, and behavioral analysis, the authors provide compelling evidence that the discriminatory coding of host odors is surprisingly simple - and bridges labeled line with combinatorial coding.


Subject(s)
Aedes , Odorants , Aedes/genetics , Animals , Brain , Calcium , Humans
11.
Sci Adv ; 8(4): eabk0445, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35089784

ABSTRACT

Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the enhancer of microexons (eMIC) domain in Srrm234. In Drosophila, this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.


Subject(s)
Drosophila Proteins , RNA Splicing , Alternative Splicing , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Mammals/genetics , Mammals/metabolism , Mice , Nerve Tissue Proteins/genetics , Neurons/metabolism , RNA-Binding Proteins
12.
Elife ; 102021 10 22.
Article in English | MEDLINE | ID: mdl-34677122

ABSTRACT

Olfactory receptor repertoires exhibit remarkable functional diversity, but how these proteins have evolved is poorly understood. Through analysis of extant and ancestrally reconstructed drosophilid olfactory receptors from the Ionotropic receptor (Ir) family, we investigated evolution of two organic acid-sensing receptors, Ir75a and Ir75b. Despite their low amino acid identity, we identify a common 'hotspot' in their ligand-binding pocket that has a major effect on changing the specificity of both Irs, as well as at least two distinct functional transitions in Ir75a during evolution. Moreover, we show that odor specificity is refined by changes in additional, receptor-specific sites, including those outside the ligand-binding pocket. Our work reveals how a core, common determinant of ligand-tuning acts within epistatic and allosteric networks of substitutions to lead to functional evolution of olfactory receptors.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , Olfactory Receptor Neurons/physiology , Receptors, Odorant/genetics , Animals , Drosophila melanogaster/metabolism , Odorants/analysis , Receptors, Odorant/metabolism
13.
Sci Adv ; 7(32)2021 08.
Article in English | MEDLINE | ID: mdl-34362730

ABSTRACT

In olfactory systems across phyla, most sensory neurons express a single olfactory receptor gene selected from a large genomic repertoire. We describe previously unknown receptor gene-dependent mechanisms that ensure singular expression of receptors encoded by a tandem gene array [Ionotropic receptor 75c (Ir75c), Ir75b, and Ir75a, organized 5' to 3'] in Drosophila melanogaster Transcription from upstream genes in the cluster runs through the coding region of downstream loci and inhibits their expression in cis, most likely via transcriptional interference. Moreover, Ir75c blocks accumulation of other receptor proteins in trans through a protein-dependent, posttranscriptional mechanism. These repression mechanisms operate in endogenous neurons, in conjunction with cell type-specific gene regulatory networks, to ensure unique receptor expression. Our data provide evidence for inter-olfactory receptor regulation in invertebrates and highlight unprecedented, but potentially widespread, mechanisms for ensuring exclusive expression of chemosensory receptors, and other protein families, encoded by tandemly arranged genes.


Subject(s)
Drosophila Proteins , Olfactory Receptor Neurons , Receptors, Odorant , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
14.
Elife ; 92020 08 05.
Article in English | MEDLINE | ID: mdl-32755544

ABSTRACT

Natural light gradients within a habitat may have helped form new fly species that have differing preferences for light.


Subject(s)
Diptera , Animals , Biological Evolution , Light
15.
Neuron ; 107(3): 412-416, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32692973

ABSTRACT

TReND is a volunteer-scientist run charity dedicated to promoting research and education on the African continent. Focusing on neuroscience, we discuss approaches to address some of the factors that currently stifle Africa's scientific development and our experience in implementing them.


Subject(s)
Biomedical Research , Capacity Building , Information Dissemination , Neurosciences/education , Public Policy , Africa , Charities , Faculty , Humans
16.
PLoS Biol ; 18(4): e3000730, 2020 04.
Article in English | MEDLINE | ID: mdl-32330124

ABSTRACT

With the current rapid spread of COVID-19, global health systems are increasingly overburdened by the sheer number of people that need diagnosis, isolation and treatment. Shortcomings are evident across the board, from staffing, facilities for rapid and reliable testing to availability of hospital beds and key medical-grade equipment. The scale and breadth of the problem calls for an equally substantive response not only from frontline workers such as medical staff and scientists, but from skilled members of the public who have the time, facilities and knowledge to meaningfully contribute to a consolidated global response. Here, we summarise community-driven approaches based on Free and Open Source scientific and medical Hardware (FOSH) as well as personal protective equipment (PPE) currently being developed and deployed to support the global response for COVID-19 prevention, patient treatment and diagnostics.


Subject(s)
Betacoronavirus , Coronavirus Infections , Equipment and Supplies, Hospital , Pandemics , Pneumonia, Viral , COVID-19 , Community Participation , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Global Health , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2
17.
Sci Adv ; 6(11): eaaz7238, 2020 03.
Article in English | MEDLINE | ID: mdl-32195354

ABSTRACT

Programmed cell death (PCD) is widespread during neurodevelopment, eliminating the surpluses of neuronal production. Using the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate new cells that express neural markers and exhibit odor-evoked activity. These "undead" neurons express a subset of olfactory receptors that is enriched for relatively recent receptor duplicates and includes some normally found in different chemosensory organs and life stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate change from death to a functional neuron. Last, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.


Subject(s)
Axons/metabolism , Olfactory Receptor Neurons/metabolism , Animals , Culicidae , Drosophila melanogaster , Odorants , Olfactory Receptor Neurons/cytology
18.
BMC Biol ; 17(1): 34, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30995910

ABSTRACT

BACKGROUND: Ionotropic receptors (IRs) are a large, divergent subfamily of ionotropic glutamate receptors (iGluRs) that are expressed in diverse peripheral sensory neurons and function in olfaction, taste, hygrosensation and thermosensation. Analogous to the cell biological properties of their synaptic iGluR ancestors, IRs are thought to form heteromeric complexes that localise to the ciliated dendrites of sensory neurons. IR complexes are composed of selectively expressed 'tuning' receptors and one of two broadly expressed co-receptors (IR8a or IR25a). While the extracellular ligand-binding domain (LBD) of tuning IRs is likely to define the stimulus specificity of the complex, the role of this domain in co-receptors is unclear. RESULTS: We identify a sequence in the co-receptor LBD, the 'co-receptor extra loop' (CREL), which is conserved across IR8a and IR25a orthologues but not present in either tuning IRs or iGluRs. The CREL contains a single predicted N-glycosylation site, which we show bears a sugar modification in recombinantly expressed IR8a. Using the Drosophila olfactory system as an in vivo model, we find that a transgenically encoded IR8a mutant in which the CREL cannot be N-glycosylated is impaired in localisation to cilia in some, though not all, populations of sensory neurons expressing different tuning IRs. This defect can be complemented by the presence of endogenous wild-type IR8a, indicating that IR complexes contain at least two IR8a subunits and that this post-translational modification is dispensable for protein folding or complex assembly. Analysis of the subcellular distribution of the mutant protein suggests that its absence from sensory cilia is due to a failure in exit from the endoplasmic reticulum. Protein modelling and in vivo analysis of tuning IR and co-receptor subunit interactions by a fluorescent protein fragment complementation assay reveal that the CREL N-glycosylation site is likely to be located on the external face of a heterotetrameric IR complex. CONCLUSIONS: Our data reveal an important role for the IR co-receptor LBD in control of intracellular transport, provide novel insights into the stoichiometry and assembly of IR complexes and uncover an unexpected heterogeneity in the trafficking regulation of this sensory receptor family.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Receptors, Ionotropic Glutamate/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Protein Transport , Receptors, Ionotropic Glutamate/chemistry , Receptors, Ionotropic Glutamate/metabolism , Sequence Alignment
19.
PLoS Biol ; 15(7): e2002702, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28719603

ABSTRACT

Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.


Subject(s)
Microscopy, Fluorescence/instrumentation , Optogenetics/instrumentation , Printing, Three-Dimensional , Animals , Behavior, Animal , Caenorhabditis elegans/physiology , Drosophila/physiology , Microscopy, Fluorescence/economics , Optogenetics/economics , Temperature , User-Computer Interface , Zebrafish/physiology
20.
Neuron ; 93(3): 661-676.e6, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28111079

ABSTRACT

Animals adapt their behaviors to specific ecological niches, but the genetic and cellular basis of nervous system evolution is poorly understood. We have compared the olfactory circuits of the specialist Drosophila sechellia-which feeds exclusively on Morinda citrifolia fruit-with its generalist cousins D. melanogaster and D. simulans. We show that D. sechellia exhibits derived odor-evoked attraction and physiological sensitivity to the abundant Morinda volatile hexanoic acid and characterize how the responsible sensory receptor (the variant ionotropic glutamate receptor IR75b) and attraction-mediating circuit have evolved. A single amino acid change in IR75b is sufficient to recode it as a hexanoic acid detector. Expanded representation of this sensory pathway in the brain relies on additional changes in the IR75b promoter and trans-acting loci. By contrast, higher-order circuit adaptations are not apparent, suggesting conserved central processing. Our work links olfactory ecology to structural and regulatory genetic changes influencing nervous system anatomy and function.


Subject(s)
Caproates/metabolism , Drosophila Proteins/genetics , Evolution, Molecular , Neurons/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Odorant/genetics , Smell/genetics , Animals , Biological Evolution , Drosophila , Drosophila Proteins/metabolism , Drosophila melanogaster , Drosophila simulans , Fruit , Morinda/chemistry , Mutation , Odorants , Receptors, Ionotropic Glutamate/metabolism , Receptors, Odorant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL