Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Dairy Sci ; 107(7): 4915-4925, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38331180

ABSTRACT

Digital dermatitis (DD) is a polybacterial disease endemic to most UK dairy farms. It poses a major financial and welfare threat and is characterized by high incidence and recurrence rates. We aimed to investigate the association between the UK EBV for resistance to digital dermatitis, the digital dermatitis index (DDI), and the frequency of DD, heel horn erosion (HHE), and interdigital hyperplasia (IH) in a population of Holstein dairy cows. We enrolled and genotyped 2,352 cows from 4 farms in a prospective cohort study. Foot lesion records were recorded by veterinary surgeons for each animal at 4 time points during a production cycle, starting at approximately 2 mo before calving and ending in late lactation. Importantly, these records were not used in the calculation of the DDI. Lesion records were matched to the animal's own DDI (n = 2,101) and their sire's DDI (n = 1,812). Digital dermatitis index values in our study population ranged from -1.41 to +1.2 and were transformed to represent distance from the mean expressed in SD. The relationship between the DDI and the presence of DD was investigated using a logistic regression model, with farm, parity, and a farm-parity interaction fitted as covariates. A multivariable logistic regression model was fitted to evaluate the relationship between HHE and DDI with farm fitted as a covariate. Finally, a univariable logistic regression model with DDI as explanatory variable was used to investigate the relationship between IH and DDI. The odds ratio of an animal being affected by DD was 0.69 for 1 SD increase in the animal's DDI (95% CI = 0.63-0.76). The odds of HHE and IH were 0.69 (95% CI = 0.62-0.76) and 0.58 (95% CI = 0.49-0.68) respectively for 1 SD increase in DDI. The adjusted probability of DD was 32% (95% CI = 27-36%) for cows with mean DDI value of 0, while it was 24% (95% CI = 20-29%) in cows with a DDI value of +1. Sire DDI breeding values were standardized in the same way and then binned into terciles creating an ordinal variable representing bulls of high, medium, and low genetic merit for DD resistance. The daughters of low genetic merit bulls were at 2.05 (95% CI = 1.60-2.64), 1.96 (95% CI = 1.53-2.50), and 2.85 (95% CI = 1.64-5.16) times greater odds of being affected by DD, HHE, and IH, respectively, compared with the daughters of high genetic merit bulls. The results of this study highlight the potential of digital dermatitis genetic indexes to aid herd management of DD, and suggest that breeding for resistance to DD, alongside environmental and management control practices, could reduce the prevalence of the disease.


Subject(s)
Cattle Diseases , Digital Dermatitis , Animals , Cattle , Digital Dermatitis/genetics , Cattle Diseases/genetics , Female , Prospective Studies , Hyperplasia/veterinary , Foot Diseases/veterinary , Foot Diseases/genetics , Genotype , Hoof and Claw/pathology
2.
J Dairy Sci ; 104(9): 10194-10202, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34099304

ABSTRACT

Our aims were to (1) determine how interdigital skin temperature (IST), measured using infrared thermography, was associated with different stages of digital dermatitis (DD) lesions and (2) develop and validate models that can use IST measurements to identify cows with an active DD lesion. Between March 2019 and March 2020, infrared thermographic images of hind feet were taken from 2,334 Holstein cows across 4 farms. We recorded the maximum temperature reading from infrared thermographic images of the interdigital skin between the heel bulbs on the hind feet. Pregnant animals were enrolled approximately 1 to 2 mo precalving, reassessed 1 wk after calving, and again at approximately 50 to 100 d postpartum. At these time points, IST and the clinical stage of DD (M-stage scoring system: M1-M4.1) were recorded in addition to other data such as the ambient environmental temperature, height, body condition score, parity, and the presence of other foot lesions. A mixed effect linear regression model with IST as the dependent variable was fitted. Interdigital skin temperature was associated with DD lesions; compared to healthy feet, IST was highest in feet with M2 lesions, followed by M1 and M4.1 lesions. Subsequently, the capacity of IST measurements to detect the presence or absence of an active DD lesion (M1, M2, or M4.1) was explored by fitting logistic regression models, which were tested using 10-fold validation. A mixed effect logistic regression model with the presence of active DD as the dependent variable was fitted first. The average area under the curve for this model was 0.80 when its ability to detect presence of active DD was tested on 10% of the data that were not used for the model's training; an average sensitivity of 0.77 and an average specificity of 0.67 was achieved. This model was then restricted so that only explanatory variables that could be practically recorded in a nonresearch, external setting were included. Validation of this model demonstrated an average area under the curve of 0.78, a sensitivity of 0.88, and a specificity of 0.66 for 1 of the time points (precalving). Lower sensitivity and specificity were achieved for the other 2 time points. Our study adds further evidence to the relationship between DD and foot skin temperature using a large data set with multiple measurements per animal. Additionally, we highlight the potential for infrared thermography to be used for routine on-farm diagnosis of active DD lesions.


Subject(s)
Cattle Diseases , Digital Dermatitis , Foot Diseases , Animals , Cattle , Cattle Diseases/diagnosis , Diagnostic Imaging , Digital Dermatitis/diagnosis , Female , Foot Diseases/diagnosis , Foot Diseases/veterinary , Parity , Pregnancy
3.
BMC Genomics ; 18(1): 624, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28814268

ABSTRACT

BACKGROUND: Mastitis is the most prevalent disease in dairy sheep with major economic, hygienic and welfare implications. The disease persists in all dairy sheep production systems despite the implementation of improved management practises. Selective breeding for enhanced mastitis resistance may provide the means to further control the disease. In the present study, we investigated the genetic architecture of four mastitis traits in dairy sheep. Individual animal records for clinical mastitis occurrence and three mastitis indicator traits (milk somatic cell count, total viable bacterial count in milk and the California mastitis test) were collected monthly throughout lactation for 609 ewes of the Greek Chios breed. All animals were genotyped with a custom-made 960-single nucleotide polymorphism (SNP) DNA array based on markers located in quantitative trait loci (QTL) regions for mastitis resistance previously detected in three other distinct dairy sheep populations. RESULTS: Heritable variation and strong positive genetic correlations were estimated for clinical mastitis occurrence and the three mastitis indicator traits. SNP markers significantly associated with these mastitis traits were confirmed on chromosomes 2, 3, 5, 16 and 19. We identified pathways, molecular interaction networks and functional gene clusters for mastitis resistance. Candidate genes within the detected regions were identified based upon analysis of an ovine transcriptional atlas and transcriptome data derived from milk somatic cells. Relevant candidate genes implicated in innate immunity included SOCS2, CTLA4, C6, C7, C9, PTGER4, DAB2, CARD6, OSMR, PLXNC1, IDH1, ICOS, FYB, and LYFR. CONCLUSIONS: The results confirmed the presence of animal genetic variability in mastitis resistance and identified genomic regions associated with specific mastitis traits in the Chios sheep. The conserved genetic architecture of mastitis resistance between distinct dairy sheep breeds suggests that across-breed selection programmes would be feasible.


Subject(s)
Dairying , Disease Resistance/genetics , Genomics , Mastitis/immunology , Sheep/genetics , Sheep/immunology , Animals , Binding Sites , Cluster Analysis , Female , Genetic Markers/genetics , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis , Transcription Factors/metabolism
4.
J Dairy Sci ; 100(8): 6285-6297, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28624287

ABSTRACT

The acetyl-CoA acyltransferase 2 (ACAA2) gene encodes an enzyme of the thiolase family that is involved in mitochondrial fatty acid elongation and degradation by catalyzing the last step of the respective ß-oxidation pathway. The increased energy needs for gluconeogenesis and triglyceride synthesis during lactation are met primarily by increased fatty acid oxidation. Therefore, the ACAA2 enzyme plays an important role in the supply of energy and carbon substrates for lactation and may thus affect milk production traits. This study investigated the association of the ACAA2 gene with important sheep traits and the putative functional involvement of this gene in dairy traits. A single nucleotide substitution, a T to C transition located in the 3' untranslated region of the ACAA2 gene, was used in mixed model association analysis with milk yield, milk protein yield and percentage, milk fat yield and percentage, and litter size at birth. The single nucleotide polymorphism was significantly associated with total lactation production and milk protein percentage, with respective additive effects of 6.81 ± 2.95 kg and -0.05 ± 0.02%. Additionally, a significant dominance effect of 0.46 ± 0.21 kg was detected for milk fat yield. Homozygous TT and heterozygous CT animals exhibited higher milk yield compared with homozygous CC animals, whereas the latter exhibited increased milk protein percentage. Expression analysis from age-, lactation-, and parity-matched female sheep showed that mRNA expression of the ACAA2 gene from TT animals was 2.8- and 11.8-fold higher in liver and mammary gland, respectively. In addition, by developing an allelic expression imbalance assay, it was estimated that the T allele was expressed at an average of 18% more compared with the C allele in the udder of randomly selected ewes. We demonstrated for the first time that the variants in the 3' untranslated region of the ovine ACAA2 gene are differentially expressed in homozygous ewes of each allele and exhibit allelic expression imbalance within heterozygotes in a tissue-specific manner, supporting the existence of cis-regulatory DNA variation in the ovine ACAA2 gene. This is the first study reporting differential allelic imbalance expression of a candidate gene associated with milk production traits in dairy sheep.


Subject(s)
3' Untranslated Regions , Acetyl-CoA C-Acyltransferase/genetics , Lactation/genetics , Sheep/genetics , 3' Untranslated Regions/genetics , Acetyl-CoA C-Acyltransferase/chemistry , Alleles , Animals , Female , Genetic Association Studies , Milk
5.
BMC Genomics ; 17: 293, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27090510

ABSTRACT

BACKGROUND: Campylobacter is the leading cause of foodborne diarrhoeal illness in humans and is mostly acquired from consumption or handling of contaminated poultry meat. In the absence of effective licensed vaccines and inhibitors, selection for chickens with increased resistance to Campylobacter could potentially reduce its subsequent entry into the food chain. Campylobacter intestinal colonisation levels are influenced by the host genetics of the chicken. In the present study, two chicken populations were used to investigate the genetic architecture of avian resistance to colonisation: (i) a back-cross of two White Leghorn derived inbred lines [(61 x N) x N] known to differ in resistance to Campylobacter colonisation and (ii) a 9(th) generation advanced intercross (61 x N) line. RESULTS: The level of colonisation with Campylobacter jejuni following experimental infection was found to be a quantitative trait. A back-cross experiment using 1,243 fully informative single nucleotide polymorphism (SNP) markers revealed quantitative trait loci (QTL) on chromosomes 7, 11 and 14. In the advanced intercross line study, the location of the QTL on chromosome 14 was confirmed and refined and two new QTLs were identified located on chromosomes 4 and 16. Pathway and re-sequencing data analysis of the genes located in the QTL candidate regions identified potential pathways, networks and candidate resistance genes. Finally, gene expression analyses were performed for some of the candidate resistance genes to support the results. CONCLUSION: Campylobacter resistance in chickens is a complex trait, possibly involving the Major Histocompatibility Complex, innate and adaptive immune responses, cadherins and other factors. Two of the QTLs for Campylobacter resistance are co-located with Salmonella resistance loci, indicating that it may be possible to breed simultaneously for enhanced resistance to both zoonoses.


Subject(s)
Campylobacter Infections/veterinary , Chickens/genetics , Poultry Diseases/genetics , Quantitative Trait Loci , Salmonella Infections, Animal/genetics , Animals , Campylobacter Infections/genetics , Campylobacter jejuni , Chickens/microbiology , Crosses, Genetic , Genome-Wide Association Study , Genotyping Techniques , Phenotype , Polymorphism, Single Nucleotide , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology
6.
Anim Genet ; 42(4): 406-14, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21749423

ABSTRACT

The objective of this study was to examine the prion protein gene locus (PRNP) in Chios sheep. PRNP is linked with scrapie resistance in small ruminants. Here, its impact on milk production (test-day and total lactation yield) and reproduction (age at first lambing, conception rate at first service, and prolificacy) was assessed. Genotyping at codons 136, 154 and 171 (classical scrapie) and 141 (atypical scrapie) was performed using DNA from milk somatic cells and PCR-RFLP analysis. A total of 1013 Chios ewes raised in 23 flocks were used. This constituted a random sample of the national breeding population. A total of 15 genotypes and 6 alleles linked to codons 136, 154 and 171 were detected. All animals were homozygous for the leucine allele at codon 141. Linear mixed models were used to assess the impact of PRNP genotypes and alleles on milk production and reproduction traits. The TRQ allele, whose association with such traits was assessed for the first time, had an adverse effect on age at first lambing. All other PRNP alleles, including ARR, which is associated with increased resistance to classical scrapie, had no significant effect on the traits studied. No significant associations of the PRNP genotypes with production and reproduction traits were observed. It was concluded that selection for scrapie-resistant sheep is not expected to affect the ongoing breeding programme that aims to enhance the milk yield and reproduction of the Chios breed.


Subject(s)
Milk/physiology , Prions/genetics , Reproduction/genetics , Scrapie/genetics , Sheep/genetics , Age Factors , Animals , Dairying , Genome-Wide Association Study , Genotype , Greece , Linear Models , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length/genetics , Sheep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL