Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Biochemistry ; 63(11): 1493-1504, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742407

ABSTRACT

DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.


Subject(s)
Adenosine Triphosphatases , DNA Gyrase , Molecular Dynamics Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , DNA Gyrase/metabolism , DNA Gyrase/chemistry , DNA Gyrase/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Protein Domains , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Signal Transduction
2.
J Ethnopharmacol ; 327: 118042, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38493907

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The cluster of differentiation 147 (CD147) is identified as the signaling protein relevant importantly in various cancers, inflammations, and coronavirus disease 2019 (COVID-19) via interacting with extracellular cyclophilin A (CypA). The reduction of CD147 levels inhibits the progression of CD147-associated diseases. Thai traditional medicines (TTMs): Keaw-hom (KH), Um-ma-ruek-ka-wa-tee (UM), Chan-ta-lee-la (CT), and Ha-rak (HR) have been used as anti-pyretic and anti-respiratory syndromes caused from various conditions including cancers, inflammations, and infections. Thus, these medicines would play a crucial role in the reduction of CD147 levels. AIM OF THE STUDY: This article aimed to investigate the effects of KH, UM, CT, and HR for reducing the CD147 levels through in vitro study. Additionally, in silico study was employed to screen the active compounds reflexing the reduction of CD147 levels. MATERIALS AND METHODS: The immunofluorescent technique was used to evaluate the reduction of CD147 levels in human lung epithelial cells (BEAS-2B) stimulated with CypA for eight extracts of KH, UM, CT, and HR obtained from water decoction (D) and 70% ethanol maceration (M) including, KHD, UMD, CTD, HRD, KHM, UMM, CTM, and HRM. RESULTS: UM extracts showed the most efficiency for reduction of CD147 levels in the cytoplasm and perinuclear of BEAS-2B cells stimulated with CypA. Phenolic compounds composing polyphenols, polyphenol sugars, and flavonoids were identified as the major chemical components of UMD and UMM. Further, molecular docking calculations identified polyphenol sugars as CypA inhibitors. CONCLUSIONS: UMD and UMM are potential for reduction of CD147 levels which provide a useful information for further development of UM as potential therapeutic candidates for CD147-associated diseases such as cancers, inflammations, and COVID-19.


Subject(s)
COVID-19 , Neoplasms , Humans , Basigin/metabolism , Medicine, Thai Traditional , Molecular Docking Simulation , Cyclophilin A/chemistry , Cyclophilin A/metabolism , Cyclophilin A/pharmacology , Inflammation , Lung/metabolism , Polyphenols , Sugars
3.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063158

ABSTRACT

Tuberculosis (TB), the second leading infectious killer, causes serious public health problems worldwide. To develop novel anti-TB agents, many biochemical studies have targeted the subunit B of DNA gyrase (GyrB), which captures a second DNA segment and responses for ATP hydrolysis. Here, we investigated specific interactions between GyrB residues and existing pyrrolamide derivatives at an electronic level using ab initio fragment molecular orbital (FMO) calculations and designed potent inhibitors against GyrB. The evaluated binding affinities between GyrB and pyrrolamides were confirmed to be consistent with the IC50 values obtained from previous experiments. Thus, we employed the most potent pyrrolamide (compound 1) as a lead compound and proposed novel pyrrolamide derivatives. The specific interactions between GyrB and these derivatives were investigated using molecular mechanic optimizations and FMO calculations. The results revealed that our proposed derivatives had strong hydrogen bonds with Asp79 and Arg141 and exhibited electrostatic interactions with Glu56 and Ile84 of GyrB. In addition, the binding affinity between GyrB and compound 1 was enhanced significantly by the replacement at the R3 site of compound 1. The present results may provide structural concepts for the rational design of potent GyrB inhibitors as anti-TB agents.Communicated by Ramaswamy H. Sarma.

4.
J Chem Inf Model ; 63(9): 2707-2718, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37074047

ABSTRACT

Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 µM. The most active compound 1 showed an IC50 value of 0.42 µM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 µM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , DNA Gyrase/chemistry , Adenylyl Imidodiphosphate/therapeutic use , Adenosine Triphosphatases/chemistry , Caco-2 Cells , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/therapeutic use , DNA
5.
Comput Biol Med ; 152: 106434, 2023 01.
Article in English | MEDLINE | ID: mdl-36543008

ABSTRACT

2-trans enoyl-acyl carrier protein reductase (InhA) is a promising target for developing novel chemotherapy agents for tuberculosis, and their inhibitory effects on InhA activity were widely investigated by the physicochemical experiments. However, the reason for the wide range of their inhibitory effects induced by similar agents was not explained by only the difference in their chemical structures. In our previous molecular simulations, a series of heteroaryl benzamide derivatives were selected as candidate inhibitors against InhA, and their binding properties with InhA were investigated to propose novel derivatives with higher binding affinity to InhA. In the present study, we extended the simulations for a series of 4-hydroxy-2-pyridone derivatives to search widely for more potent inhibitors against InhA. Using ab initio fragment molecular orbital (FMO) calculations, we elucidated the specific interactions between InhA residues and the derivatives at an electronic level and highlighted key interactions between InhA and the derivatives. The FMO results clearly indicated that the most potent inhibitor has strong hydrogen bonds with the backbones of Tyr158, Thr196, and NADH of InhA. This finding may provide informative structural concepts for designing novel 4-hydroxy-2-pyridone derivatives with higher binding affinity to InhA. Our previous and present molecular simulations could provide important guidelines for the rational design of more potent InhA inhibitors.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy , Drug Design , Bacterial Proteins , Structure-Activity Relationship
6.
J Chem Inf Model ; 62(24): 6508-6518, 2022 12 26.
Article in English | MEDLINE | ID: mdl-35994014

ABSTRACT

Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 µg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 µM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 µM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Proto-Oncogene Proteins c-akt/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Tuberculosis/drug therapy , Phosphorylation
7.
Future Med Chem ; 14(18): 1297-1308, 2022 09.
Article in English | MEDLINE | ID: mdl-36043391

ABSTRACT

Background: JAK2 inhibitors have been proposed as a new therapeutic option for thalassemia therapy. The objective of this study was to discover the key structural features for improving 2-aminopyrimidine derivatives as potential JAK2 inhibitors. Materials & methods: Quantitative structure-activity relationship (QSAR) approaches (hologram QSAR and comparative molecular similarity indices analysis), molecular dynamics simulations, binding energy calculations and pharmacokinetic predictions were employed. Results: Reliable QSAR models, binding mode and binding interactions of JAK2 inhibitors were obtained and these obtained results were used as the key information for rational design of highly potent JAK2 inhibitors. Conclusion: The concept of new potential JAK2 inhibitors integrated from the obtained results was proved, producing two newly designed compounds, D01 and D02, with potential for use as JAK2 inhibitors.


Subject(s)
Drug Design , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Molecular Dynamics Simulation
8.
J Mol Graph Model ; 115: 108231, 2022 09.
Article in English | MEDLINE | ID: mdl-35667143

ABSTRACT

Serine/threonine protein kinase B (PknB) is essential to Mycobacterium tuberculosis (M. tuberculosis) cell division and metabolism and a potential anti-tuberculosis drug target. Here we apply Hologram Quantitative Structure Activity Relationship (HQSAR) and three-dimensional QSAR (Comparative Molecular Similarity Indices Analysis (CoMSIA)) methods to investigate structural requirements for PknB inhibition by a series of previously described quinazoline derivatives. PknB binding of quinazolines was evaluated by molecular dynamics (MD) simulations of the catalytic domain and binding energies calculated by Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) methods. Evaluation of a training set against experimental data showed both HQSAR and CoMSIA models to reliably predict quinazoline binding to PknB, and identified the quinazoline core and overall hydrophobicity as the major contributors to affinity. Calculated binding energies also agreed with experiment, and MD simulations identified hydrogen bonds to Glu93 and Val95, and hydrophobic interactions with Gly18, Phe19, Gly20, Val25, Thr99 and Met155, as crucial to PknB binding. Based on these results, additional quinazolines were designed and evaluated in silico, with HQSAR and CoMSIA models identifying sixteen compounds, with predicted PknB binding superior to the template, whose activity spectra and physicochemical, pharmacokinetic, and anti-M. tuberculosis properties were assessed. Compound, D060, bearing additional ortho- and meta-methyl groups on its R2 substituent, was superior to template regarding PknB inhibition and % caseum fraction unbound, and equivalent in other aspects, although predictions identified hepatotoxicity as a likely issue with the quinazoline series. These data provide a structural basis for rational design of quinazoline derivatives with more potent PknB inhibitory activity as candidate anti-tuberculosis agents.


Subject(s)
Mycobacterium tuberculosis , Quantitative Structure-Activity Relationship , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology
9.
Future Med Chem ; 14(10): 717-729, 2022 05.
Article in English | MEDLINE | ID: mdl-35485258

ABSTRACT

Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction. In addition, molecular mechanics Poisson-Boltzmann surface area, molecular mechanics Generalized Born surface area and WaterSwap methods were performed to investigate the binding interactions and binding energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical, pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate compounds were H-bond, pi-pi and sigma-pi interactions observed in the InhA binding site. The binding affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further experimental studies.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation
10.
J Chem Inf Model ; 62(7): 1680-1690, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35347987

ABSTRACT

Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 µg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 µM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adenosine Triphosphatases , Adenosine Triphosphate , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , DNA Gyrase/chemistry , Humans , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Tuberculosis/drug therapy
11.
Proteins ; 90(3): 898-904, 2022 03.
Article in English | MEDLINE | ID: mdl-34677871

ABSTRACT

3-Nitropropanoic acid (3NP), a bioactive fungal natural product, was previously demonstrated to inhibit growth of Mycobacterium tuberculosis. Here we demonstrate that 3NP inhibits the 2-trans-enoyl-acyl carrier protein reductase (InhA) from Mycobacterium tuberculosis with an IC50 value of 71 µM, and present the crystal structure of the ternary InhA-NAD+ -3NP complex. The complex contains the InhA substrate-binding loop in an ordered, open conformation with Tyr158, a catalytically important residue whose orientation defines different InhA substrate/inhibitor complex conformations, in the "out" position. 3NP occupies a hydrophobic binding site adjacent to the NAD+ cofactor and close to that utilized by the diphenyl ether triclosan, but binds predominantly via electrostatic and water-mediated hydrogen-bonding interactions with the protein backbone and NAD+ cofactor. The identified mode of 3NP binding provides opportunities to improve inhibitory activity toward InhA.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/chemistry , Nitro Compounds/chemistry , Oxidoreductases/antagonists & inhibitors , Propionates/chemistry , Binding Sites , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , NAD/chemistry , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship
12.
J Chem Inf Model ; 60(1): 226-234, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31820972

ABSTRACT

The enoyl-acyl carrier protein reductase InhA of Mycobacterium tuberculosis is an attractive, validated target for antituberculosis drug development. Moreover, direct inhibitors of InhA remain effective against InhA variants with mutations associated with isoniazid resistance, offering the potential for activity against MDR isolates. Here, structure-based virtual screening supported by biological assays was applied to identify novel InhA inhibitors as potential antituberculosis agents. High-speed Glide SP docking was initially performed against two conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed MIC of 12.5 and 25 µg/mL against M. tuberculosis H37Rv, respectively. Inhibition assays against purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, respectively. A crystal structure of the most potent compound, compound 7, bound to InhA revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic portions of InhA substrates but distant from the NADH cofactor, i.e., in a site distinct from those occupied by the great majority of known InhA inhibitors. This compound provides an attractive starting template for ligand optimization aimed at discovery of new and effective compounds against M. tuberculosis that act by targeting InhA.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Discovery , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Reproducibility of Results , Structure-Activity Relationship
13.
J Mol Graph Model ; 88: 299-308, 2019 05.
Article in English | MEDLINE | ID: mdl-30826710

ABSTRACT

2-trans enoyl-acyl carrier protein reductase (InhA) has been identified as a promising target for the development of novel chemotherapy for tuberculosis. In the present study, a series of heteroaryl benzamide derivatives were selected as potent inhibitors against InhA, and their binding properties with InhA were investigated at atomic and electronic levels by ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics optimizations and ab initio fragment molecular orbital (FMO) calculations. The results evaluated by FMO highlight some key interactions between InhA and the derivatives, indicating that the most potent derivative has strong hydrogen bonds with the Met98 side chain of InhA and strong electrostatic interactions with the nicotinamide adenine dinucleotide cofactor. These findings provide informative structural concepts for designing novel heteroaryl benzamide derivatives with higher binding affinity to InhA.


Subject(s)
Acyl Carrier Protein/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxidoreductases/chemistry , Acyl Carrier Protein/metabolism , Amino Acids/chemistry , Ligands , Molecular Structure , Oxidoreductases/metabolism , Protein Conformation , Structure-Activity Relationship , Water/chemistry
14.
J Chem Inf Model ; 59(4): 1422-1433, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30840825

ABSTRACT

Shikimate dehydrogenase (SDH) from Mycobacterium tuberculosis ( MtbSDH), encoded by the aroE gene, is essential for viability of M. tuberculosis but absent from humans. Therefore, it is a potentially promising target for antituberculosis agent development. Molecular-level understanding of the interactions of MtbSDH with its 3-dehydroshikimate (DHS) substrate and NADPH cofactor will help in the design of novel and effective MtbSDH inhibitors. However, this is limited by the lack of relevant crystal structures for MtbSDH complexes. Here, molecular dynamics (MD) simulations were performed to generate these MtbSDH complexes and investigate interactions of MtbSDH with substrate and cofactor and the role of MtbSDH dynamics within these. The results indicate that, while structural rearrangements are not necessary for DHS binding, reorientation of individual side chains in the NADPH binding pocket is involved in ternary complex formation. The mechanistic roles for Lys69, Asp105, and Ala213 were investigated by generating Lys69Ala, Asp105Asn, and Ala213Leu mutants in silico and investigating their complexes with DHS and NADPH. Our results show that Lys69 plays a dual role, in positioning NADPH and in catalysis. Asp105 plays a crucial role in positioning both the ε-amino group of Lys69 and nicotinamide ring of NADPH for MtbSDH catalysis but makes no direct contribution to DHS binding. Ala213 is the selection key for NADPH binding with the nicotinamide ring in the proS, rather than proR, conformation in the MtbSDH complex. Our results identify three strategies for MtbSDH inhibition: prevention of MtbSDH binary and ternary complex formation by blocking DHS and NADPH binding (first and second strategies, respectively) and the prevention of MtbSDH complex formation with either DHS or NADPH by blocking both DHS and NADPH binding (third strategy). Further, based on this third strategy, we propose guidelines for the rational design of "hybrid" MtbSDH inhibitors able to bind in both the substrate (DHS) and cofactor (NADPH) pockets, providing a new avenue of exploration in the search for anti-TB therapeutics.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , NADP/metabolism , Shikimic Acid/analogs & derivatives , Binding Sites , Drug Design , Enzyme Inhibitors/pharmacology , Protein Conformation , Shikimic Acid/metabolism
15.
J Biomol Struct Dyn ; 34(5): 1079-91, 2016 May.
Article in English | MEDLINE | ID: mdl-26156406

ABSTRACT

The Mycobacterium tuberculosis protein kinase B (PknB) is critical for growth and survival of M. tuberculosis within the host. The series of aminopyrimidine derivatives show impressive activity against PknB (IC50 < .5 µM). However, most of them show weak or no cellular activity against M. tuberculosis (MIC > 63 µM). Consequently, the key structural features related to activity against of both PknB and M. tuberculosis need to be investigated. Here, two- and three-dimensional quantitative structure-activity relationship (2D and 3D QSAR) analyses combined with molecular dynamics (MD) simulations were employed with the aim to evaluate these key structural features of aminopyrimidine derivatives. Hologram quantitative structure-activity relationship (HQSAR) and CoMSIA models constructed from IC50 and MIC values of aminopyrimidine compounds could establish the structural requirements for better activity against of both PknB and M. tuberculosis. The NH linker and the R1 substituent of the template compound are not only crucial for the biological activity against PknB but also for the biological activity against M. tuberculosis. Moreover, the results obtained from MD simulations show that these moieties are the key fragments for binding of aminopyrimidine compounds in PknB. The combination of QSAR analysis and MD simulations helps us to provide a structural concept that could guide future design of PknB inhibitors with improved potency against both the purified enzyme and whole M. tuberculosis cells.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Computers, Molecular , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quantitative Structure-Activity Relationship , Amino Acid Substitution , Drug Discovery , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
16.
Chem Biol Drug Des ; 86(1): 91-101, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25354564

ABSTRACT

Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Crystallography, X-Ray , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/chemistry
17.
J Mol Model ; 20(7): 2319, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24935113

ABSTRACT

Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA.

18.
Mol Inform ; 32(5-6): 541-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-27481671

ABSTRACT

Azanaphthoquinone annelated pyrrole derivatives have been developed and synthesized with a continuous attempt to develop novel DNA intercalating agents as anti-cancer compounds with lower organ toxicity. With the remarkable antiproliferative activity of synthesized azanaphthoquinone annelated pyrrole derivatives, a structurally novel scaffold of these compounds is appropriated for further development of novel anti-cancer agents. Therefore, in the present study, 3D QSAR study (CoMSIA) was applied on 28 azanaphthoquinone annelated pyrrole derivatives to evaluate the structural requirement of these compounds. The resulting CoMSIA model is satisfied with r(2) of 0.99 and q(2) of 0.65. The interpretation of CoMSIA contours reveals the significant importance of steric, electrostatic, hydrophobic and hydrogen acceptor descriptors on the activities of azanaphthoquinone annelated pyrrole derivatives. Remarkably, the structural requirement of six substituent positions on the azanaphthoquinone annelated pyrrole scaffold was elucidated here. This result is the useful concept for design of new and more active azanaphthoquinone annelated pyrrole derivatives. Moreover, MD simulations using AMBER program were performed to model the binding of azanaphthoquinone annelated pyrrole derivatives in the intercalation site of the DNA duplex. Based on MD simulations, the information in terms of ligand-DNA interaction, complex structure and binding free energy was provided in this work. Therefore, the integrated results are informative for further modification of azanaphthoquinone annelated pyrrole scaffold leading to gain novel azanaphthoquinone annelated pyrrole derivatives possessing better antiproliferative activity.

19.
Eur J Med Chem ; 45(12): 5585-93, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20888672

ABSTRACT

Arylamides have been identified as direct InhA inhibitors which overcome the drug-resistance problem of isoniazid, the first-line drug for tuberculosis treatment. However, arylamide properties are not yet optimal against Mycobacterium tuberculosis. Arylamides show high potency in InhA enzyme assay, but they fail in antimycobacterial assay. To achieve the structural basis to improve antimycobacterial activity, the dynamic behavior of arylamide inhibitors and a substrate, trans-2-hexadecenoyl-(N-acetylcysteamine)-thioester, were carried out by molecular dynamics (MD) simulations. Arylamide inhibitors and a substrate are positioned at the same site which indicates the competitive inhibitor function of arylamides. Based on our findings, the amide carbonyl oxygen causes the selectivity of arylamide inhibitors for InhA inhibition. Moreover, this moiety is crucial for the affinity of the arylamide-InhA interactions with Tyr158 and NADH to form hydrogen bonds. It is possible to enhance the selectivity of arylamide inhibitors to reach the InhA target by introducing a hydrophilic substituent into the aryl ring A. In order to increase the membrane permeability of arylamide inhibitors, more lipophilic properties should be incorporated into the substituent B. Therefore, based on the obtained results, the correct balance between the selectivity and the membrane permeability of arylamide inhibitors should improve their inhibitory activity against M. tuberculosis strain.


Subject(s)
Amides/chemistry , Amides/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/antagonists & inhibitors , Crystallography, X-Ray , Ligands , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Oxidoreductases/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship
20.
Molecules ; 15(4): 2791-813, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20428080

ABSTRACT

The enoyl-ACP reductase enzyme (InhA) from M. tuberculosis is recognized as the primary target of isoniazid (INH), a first-line antibiotic for tuberculosis treatment. To identify the specific interactions of INH-NAD adduct and its derivative adducts in InhA binding pocket, molecular docking calculations and quantum chemical calculations were performed on a set of INH derivative adducts. Reliable binding modes of INH derivative adducts in the InhA pocket were established using the Autodock 3.05 program, which shows a good ability to reproduce the X-ray bound conformation with rmsd of less than 1.0 A. The interaction energies of the INH-NAD adduct and its derivative adducts with individual amino acids in the InhA binding pocket were computed based on quantum chemical calculations at the MP2/6-31G (d) level. The molecular docking and quantum chemical calculation results reveal that hydrogen bond interactions are the main interactions for adduct binding. To clearly delineate the linear relationship between structure and activity of these adducts, CoMFA and CoMSIA models were set up based on molecular docking alignment. The resulting CoMFA and CoMSIA models are in conformity with the best statistical qualities, in which r2cv is 0.67 and 0.74, respectively. Structural requirements of isoniazid derivatives that can be incorporated into the isoniazid framework to improve the activity have been identified through CoMFA and CoMSIA steric and electrostatic contour maps. The integrated results from structure-based, ligand-based design approaches and quantum chemical calculations provide useful structural information facilitating the design of new and more potentially effective antitubercular agents as follow: the R substituents of isoniazid derivatives should contain a large plane and both sides of the plane should contain an electropositive group. Moreover, the steric and electrostatic fields of the 4-pyridyl ring are optimal for greater potency.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Computer Simulation , Isoniazid/analogs & derivatives , Models, Chemical , Mycobacterium tuberculosis/enzymology , Oxidoreductases/chemistry , Antitubercular Agents/pharmacology , Isoniazid/chemistry , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...