Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Accid Anal Prev ; 193: 107328, 2023 Dec.
Article En | MEDLINE | ID: mdl-37837890

Differences in injury risk between females and males are often reported in field data analysis. The aim of this study was to investigate the differences in kinematics and injury risks between average female and male anthropometry in two exemplary use cases. A simulation study comprising the newly introduced VIVA+ human body models (HBM) was performed for two use cases. The first use case relates to whiplash associated disorders sustained in rear impacts and the second to femur fractures in pedestrians impacted by passenger cars as field data indicates that females have higher injury risk compared to males in these scenarios. Detailed seat models and a generic vehicle exterior were used to simulate crash scenarios close to those currently tested in consumer information tests. In the evaluations with one of the vehicle seats and one car shape the injury risks were equal for both models. However, the risk of the average female HBM for whiplash associated disorders was 1.5 times higher compared to the average male HBM for the rear impacts in the other seat and 10 times higher for proximal femur fractures in the pedestrian impacts for one of the two evaluated vehicle shapes.. Further work is needed to fully understand trends observed in the field and to derive appropriate countermeasures, which can be performed with the open source tools introduced in the current study.


Fractures, Bone , Whiplash Injuries , Wounds and Injuries , Humans , Male , Female , Accidents, Traffic , Automobiles , Computer Simulation , Whiplash Injuries/epidemiology , Whiplash Injuries/etiology , Biomechanical Phenomena , Wounds and Injuries/epidemiology , Wounds and Injuries/etiology
2.
Biomech Model Mechanobiol ; 21(6): 1731-1742, 2022 Dec.
Article En | MEDLINE | ID: mdl-35927540

Modeling muscle activity in the neck muscles of a finite element (FE) human body model can be based on two biological reflex systems. One approach is to approximate the Vestibulocollic reflex (VCR) function, which maintains the head orientation relative to a fixed reference in space. The second system tries to maintain the head posture relative to the torso, similar to the Cervicocolic reflex (CCR). Strategies to combine these two neck muscle controller approaches in a single head-neck FE model were tested, optimized, and compared to rear-impact volunteer data. The first approach, Combined-Control, assumed that both controllers simultaneously controlled all neck muscle activations. In the second approach, Distributed-Control, one controller was used to regulate activation of the superficial muscles while a different controller acted on deep neck muscles. The results showed that any muscle controller that combined the two approaches was less effective than only using one of VCR- or CCR-based systems on its own. A passive model had the best objective rating for cervical spine kinematics, but the addition of a single active controller provided the best response for both head and cervical spine kinematics. The present study demonstrates the difficulty in completely capturing representative head and cervical spine responses to rear-impact loading and identified a controller capturing the VCR reflex as the best candidate to investigate whiplash injury mechanisms through FE modeling.


Neck Muscles , Whiplash Injuries , Humans , Neck Muscles/physiology , Neck/physiology , Head/physiology , Biomechanical Phenomena , Cervical Vertebrae
3.
Ann Biomed Eng ; 49(1): 115-128, 2021 Jan.
Article En | MEDLINE | ID: mdl-32333133

ViVA Open Human Body Model (HBM) is an open-source human body model that was developed to fill the gap of currently available models that lacked the average female size. In this study, the head-neck model of ViVA OpenHBM was further developed by adding active muscle controllers for the cervical muscles to represent the human neck muscle reflex system as studies have shown that cervical muscles influence head-neck kinematics during impacts. The muscle controller was calibrated by conducting optimization-based parameter identification of published-volunteer data. The effects of different calibration objectives to head-neck kinematics were analyzed and compared. In general, a model with active neck muscles improved the head-neck kinematics agreement with volunteer responses. The current study highlights the importance of including active muscle response to mimic the volunteer's kinematics. A simple PD controller has found to be able to represent the behavior of the neck muscle reflex system. The optimum gains that defined the muscle controllers in the present study were able to be identified using optimizations. The present study provides a basis for describing an active muscle controller that can be used in future studies to investigate whiplash injuries in rear impacts.


Cervical Vertebrae/physiology , Head/physiology , Models, Biological , Muscle, Skeletal/physiology , Neck/physiology , Whiplash Injuries/physiopathology , Accidents, Traffic , Biomechanical Phenomena , Female , Finite Element Analysis , Head Movements/physiology , Humans
4.
Traffic Inj Prev ; 20(sup2): S116-S122, 2019.
Article En | MEDLINE | ID: mdl-31617760

Objective: ViVA OpenHBM is the first open source Human Body Model (HBM) for crash safety assessment. It represents an average size (50th percentile) female and was created to assess whiplash protection systems in a car. To increase the biofidelity of the current model, further enhancements are being made by implementing muscle reflex response capabilities as cervical muscles alter the head and neck kinematics of the occupant during low-speed rear crashes. The objective of this study was to assess how different neck muscle activation control strategies affect head-neck kinematics in low speed rear impacts.Methods: The VIVA OpenHBM head-neck model, previously validated to PMHS data, was used for this study. To represent the 34 cervical muscles, 129 beam elements with Hill-type material models were used. Two different muscle activation control strategies were implemented: a control strategy to mimic neural feedback from the vestibular system and a control strategy to represent displacement feedback from muscle spindles. To identify control gain values for these controller strategies, parameter calibrations were conducted using optimization. The objective of these optimizations was to match the head linear and angular displacements measured in volunteer tests.Results: Muscle activation changed the head kinematics by reducing the peak linear displacements, as compared to the model without muscle activation. For the muscle activation model mimicking the human vestibular system, a good agreement was observed for the horizontal head translation. However, in the vertical direction there was a discrepancy of head kinematic response caused by buckling of the cervical spine. In the model with a control strategy that represents muscle spindle feedback, improvements in translational head kinematics were observed and less cervical spine buckling was observed. Although, the overall kinematic responses were better in the first strategy.Conclusions: Both muscle control strategies improved the head kinematics compared to the passive model and comparable to the volunteer kinematics responses with overall better agreement achieved by the model with active muscles mimicking the human vestibular system.


Accidents, Traffic , Head Movements/physiology , Neck Muscles/physiology , Whiplash Injuries/prevention & control , Biomechanical Phenomena , Cervical Vertebrae/physiology , Computer Simulation , Feedback, Physiological , Female , Finite Element Analysis , Head/physiology , Humans , Male , Models, Anatomic , Neck/physiology , Whiplash Injuries/etiology , Whiplash Injuries/physiopathology
...