Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Inflamm Res ; 72(8): 1583-1601, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464053

ABSTRACT

OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.


Subject(s)
Receptor, Bradykinin B1 , Receptor, Bradykinin B2 , Mice , Animals , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B1/genetics , Bradykinin/metabolism , Bradykinin/pharmacology , Muscle, Skeletal , Fibrosis , Regeneration , Receptors, Bradykinin
3.
Kidney Int ; 104(2): 293-304, 2023 08.
Article in English | MEDLINE | ID: mdl-37105519

ABSTRACT

Chronic kidney disease is one of the leading causes of morbidity and mortality especially among the aged population. A decline in kidney function with ageing comparable to ageing-related processes in human kidneys has also been described in Sprague-Dawley (SD) rats. The renin-angiotensin-system (RAS) plays a pivotal role in the pathophysiology of cardiovascular and kidney disease and is a successful therapeutic target. The discovery of angiotensin-(1-7) (Ang(1-7)), mainly produced by angiotensin-converting enzyme 2 (ACE2), and its receptor MAS offered a new view on the RAS. This ACE2/Ang(1-7)/MAS axis counteracts most deleterious actions of the RAS in the kidney. In order to evaluate if activation of this axis has a protective effect in ageing-induced kidney disease we generated a transgenic rat model (TGR(SM22hACE2)) overexpressing human ACE2 in vascular smooth muscle cells. These animals showed a specific transgene expression pattern and increased ACE2 activity in the kidney. Telemetric recording of cardiovascular parameters and evaluation of kidney function by histology and urine analysis revealed no alterations in blood pressure regulation and basal kidney function in young transgenic rats when compared to young SD rats. However, with ageing, SD rats developed a decline in kidney function characterized by severe albuminuria which was significantly less pronounced in TGR(SM22hACE2) rats. Concomitantly, we detected lower mRNA expression levels of kidney damage markers in aged transgenic animals. Thus, our results indicate that vascular ACE2-overexpression protects the kidney against ageing-induced decline in kidney function, supporting the kidney-protective role of the ACE2/Ang(1-7)/MAS axis.


Subject(s)
Peptidyl-Dipeptidase A , Renal Insufficiency, Chronic , Rats , Animals , Humans , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Rats, Sprague-Dawley , Renin-Angiotensin System , Kidney/metabolism , Peptide Fragments/metabolism , Rats, Transgenic , Renal Insufficiency, Chronic/metabolism , Aging/genetics , Angiotensin I/metabolism , Receptors, G-Protein-Coupled
4.
Br J Pharmacol ; 180(14): 1843-1861, 2023 07.
Article in English | MEDLINE | ID: mdl-36740662

ABSTRACT

BACKGROUND AND PURPOSE: All previous rodent models lacking the peptide hormone angiotensin II (Ang II) were hypotensive. A mixed background strain with global deletion of the angiotensinogen gene was backcrossed to the FVB/N background (Agt-KO), a strain preferred for transgenic generation. Surprisingly, the resulting line turned out to be normotensive. Therefore, this study aimed to understand the unique blood pressure regulation of FVB/N mice without angiotensin peptides. EXPERIMENTAL APPROACH: Acute and chronic recordings of blood pressure (BP) in freely-moving adult mice were performed to establish baseline BP. The pressure responses to sympatholytic and sympathomimetic as well as a nitric oxide inhibitor and donor compounds were used to quantify the neurogenic tone and endothelial function. The role of the renal nerves on baseline BP maintenance was tested by renal denervation. Finally, further phenotyping was done by gene expression analysis, histology and measurement of metabolites in plasma, urine and tissues. KEY RESULTS: Baseline BP in adult FVB/N Agt-KO was unexpectedly unaltered. As compensatory mechanisms Agt-KO presented an increased sympathetic nerve activity and reduced endothelial nitric oxide production. However, FVB/N Agt-KO exhibited the renal morphological and physiological alterations previously found in mice lacking the production of Ang II including polyuria and hydronephrosis. The hypotensive effect of bilateral renal denervation was blunted in Agt-KO compared to wildtype FVB/N mice. CONCLUSION AND IMPLICATIONS: We describe a germline Agt-KO line that challenges all previous knowledge on BP regulation in mice with deletion of the classical RAS. This line may represent a model of drug-resistant hypertension because it lacks hypotension.


Subject(s)
Angiotensinogen , Nitric Oxide , Mice , Animals , Angiotensinogen/genetics , Angiotensinogen/metabolism , Blood Pressure , Nitric Oxide/pharmacology , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mice, Inbred Strains , Renin-Angiotensin System
5.
FEBS Open Bio ; 13(1): 118-132, 2023 01.
Article in English | MEDLINE | ID: mdl-36352324

ABSTRACT

Recent evidence demonstrated that alterations in the QT interval duration on the ECG are not only determined by mutations in genes for ion channels, but also by modulators of ion channels. Changes in the QT interval duration beyond certain thresholds are pathological and can lead to sudden cardiac death. We here focus on the ion channel modulator nitric oxide synthase 1 adaptor protein (Nos1ap). Whole-cell patch-clamp measurements of a conditional transgenic mouse model exhibiting cardiac-specific Nos1ap over-expression revealed a Nos1ap-dependent increase of L-type calcium channel nitrosylation, which led to increased susceptibility to ventricular tachycardias associated with a decrease in QT duration and shortening of APD90 duration. Survival was significantly reduced (60% after 12 weeks vs. 100% in controls). Examination of the structural features of the hearts of transgenic mice revealed constant heart dimensions and wall thickness without abnormal fibrosis content or BNP production after 3 months of Nos1ap over-expression compared to controls. Nos1ap over-expression did not alter cGMP production or ROS concentration. Our study showed that myocardial over-expression of Nos1ap leads to the shortening of the QT interval and reduces the survival rate of transgenic animals, perhaps via the development of ventricular arrhythmias. We conclude that Nos1ap overexpression causes targeted subcellular localization of Nos1 to the CaV1.2 with a subsequent decrease of ADP90 and the QT interval. This causes detrimental cardiac arrhythmias in transgenic mice.


Subject(s)
Long QT Syndrome , Mice , Animals , Long QT Syndrome/genetics , Mice, Transgenic , Genotype , Electrocardiography , Arrhythmias, Cardiac , Adaptor Proteins, Signal Transducing/genetics
6.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36259389

ABSTRACT

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Subject(s)
Heart Failure , Hypertension , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , X-Ray Microtomography , Induced Pluripotent Stem Cells/metabolism , Hypertension/complications , Hypertension/genetics , Myocytes, Cardiac/metabolism , Cardiomegaly , RNA
7.
Biochem Biophys Res Commun ; 621: 20-24, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35809343

ABSTRACT

Atherosclerosis has become prevalent not only in Western industrialized countries but all over the globe. Gpnmb, a transmembrane protein expressed by macrophages, has been detected in aortic lesions. We created an ApoE/Gpnmb-double knockout mouse using Crispr-Cas9 to examine the effect of Gpnmb deficiency on the development of atherosclerotic plaques. Feeding female mice a high cholesterol diet for 8 and 12 weeks, we detected an increased plaque size in aortic root sections of Gpnmb-deficient compared to control mice. However, the plaque area in whole thoracic and abdominal aorta was not different. Despite its strong expression in macrophages in aortic plaques, Gpnmb exerts only a minor effect on the growth of the atherosclerotic plaques in female mice. Future studies should examine plaque stability and include both sexes to elucidate the sex-specific function of Gpnmb in atherosclerosis.


Subject(s)
Atherosclerosis , Membrane Glycoproteins , Plaque, Atherosclerotic , Animals , Aorta, Abdominal/pathology , Atherosclerosis/metabolism , Disease Models, Animal , Eye Proteins/metabolism , Female , Macrophages/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic/pathology
8.
Hypertens Res ; 45(2): 292-307, 2022 02.
Article in English | MEDLINE | ID: mdl-34916661

ABSTRACT

Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.


Subject(s)
Hypertension , Animals , Carboxypeptidases , Cardiomegaly/genetics , Humans , Hypertrophy, Left Ventricular , Mice , Myocytes, Cardiac , Rats
9.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830315

ABSTRACT

Changes in the renin-angiotensin system, known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. While the renin-angiotensin system is suppressed during aging, little is known about its regulation and activity within tissues. However, this knowledge is required to successively treat or prevent renal disease in the elderly. Ercc1 is involved in important DNA repair pathways, and when mutated causes accelerated aging phenotypes in humans and mice. In this study, we hypothesized that unrepaired DNA damage contributes to accelerated kidney failure. We tested the use of the renin-activatable near-infrared fluorescent probe ReninSense680™ in progeroid Ercc1d/- mice and compared renin activity levels in vivo to wild-type mice. First, we validated the specificity of the probe by detecting increased intrarenal activity after losartan treatment and the virtual absence of fluorescence in renin knock-out mice. Second, age-related kidney pathology, tubular anisokaryosis, glomerulosclerosis and increased apoptosis were confirmed in the kidneys of 24-week-old Ercc1d/- mice, while initial renal development was normal. Next, we examined the in vivo renin activity in these Ercc1d/- mice. Interestingly, increased intrarenal renin activity was detected by ReninSense in Ercc1d/- compared to WT mice, while their plasma renin concentrations were lower. Hence, this study demonstrates that intrarenal RAS activity does not necessarily run in parallel with circulating renin in the aging mouse. In addition, our study supports the use of this probe for longitudinal imaging of altered RAS signaling in aging.


Subject(s)
Aging/genetics , Angiotensin II/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Glomerulosclerosis, Focal Segmental/genetics , Progeria/genetics , Renal Insufficiency, Chronic/genetics , Renin/genetics , Aging/metabolism , Aging/pathology , Angiotensin II/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , DNA Damage , DNA Repair , DNA-Binding Proteins/deficiency , Disease Models, Animal , Endonucleases/deficiency , Female , Gene Expression Regulation , Glomerular Filtration Rate , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Kidney/metabolism , Kidney/pathology , Losartan/pharmacology , Male , Mice , Mice, Knockout , Progeria/metabolism , Progeria/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renin/metabolism , Renin-Angiotensin System/genetics , Signal Transduction
10.
Sci Rep ; 11(1): 19614, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608215

ABSTRACT

Obesity can cause a chronic, low-grade inflammation, which is a critical step in the development of type II diabetes and cardiovascular diseases. Inflammation is associated with the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), which is mainly expressed by macrophages and dendritic cells. We generated a Gpnmb-knockout mouse line using Crispr-Cas9 to assess the role of Gpnmb in a diet-induced obesity. The absence of Gpnmb did not affect body weight gain and blood lipid parameters. While wildtype animals became obese but remained otherwise metabolically healthy, Gpnmb-knockout animals developed, in addition to obesity, symptoms of metabolic syndrome such as adipose tissue inflammation, insulin resistance and liver fibrosis. We observed a strong Gpnmb expression in adipose tissue macrophages in wildtype animals and a decreased expression of most macrophage-related genes independent of their inflammatory function. This was corroborated by in vitro data showing that Gpnmb was mostly expressed by reparative macrophages while only pro-inflammatory stimuli induced shedding of Gpnmb. The data suggest that Gpnmb is ameliorating adipose tissue inflammation independent of the polarization of macrophages. Taken together, the data suggest an immune-balancing function of Gpnmb that could delay the metabolic damage caused by the induction of obesity.


Subject(s)
Adipose Tissue/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Inflammation/etiology , Inflammation/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation , Inflammation/pathology , Insulin Resistance/genetics , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Macrophages/metabolism , Mice , Mice, Knockout
11.
Clin Sci (Lond) ; 135(18): 2197-2216, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34494083

ABSTRACT

Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.


Subject(s)
Angiotensin I/metabolism , Cardiovascular System/metabolism , Hemodynamics , Hypertension/prevention & control , Peptide Fragments/metabolism , Sympathetic Nervous System/metabolism , Angiotensin I/genetics , Animals , Arginine Vasopressin/metabolism , Atrial Natriuretic Factor/metabolism , Blood Flow Velocity , Blood Pressure , Cardiovascular System/physiopathology , Disease Models, Animal , Genotype , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hemodynamics/genetics , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Male , Peptide Fragments/genetics , Phenotype , Rats, Sprague-Dawley , Rats, Transgenic , Recombinant Fusion Proteins/metabolism , Regional Blood Flow , Sympathetic Nervous System/physiopathology , Time Factors , Vascular Resistance
12.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34473250

ABSTRACT

Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin ß. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility.


Subject(s)
Infertility, Male/metabolism , Spermatogenesis , alpha Karyopherins/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Infertility, Male/genetics , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Receptors, Androgen/metabolism , Sertoli Cells/metabolism , Spermatogonia/metabolism , alpha Karyopherins/deficiency , alpha Karyopherins/metabolism
13.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34346721

ABSTRACT

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Subject(s)
Angiotensin I/pharmacology , Arterial Pressure/drug effects , Cardiovascular System/innervation , Cerebral Cortex/drug effects , Heart Rate/drug effects , Kidney/innervation , Nerve Tissue Proteins/agonists , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Receptors, G-Protein-Coupled/agonists , Sympathetic Nervous System/drug effects , Animals , Cerebral Cortex/physiology , Ligands , Male , Microinjections , Nerve Tissue Proteins/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/agonists , Proto-Oncogene Proteins/metabolism , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/metabolism , Sympathetic Nervous System/physiology
14.
J Cardiovasc Magn Reson ; 23(1): 63, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34053450

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) related myocardial vascular remodelling may lead to the reduction of myocardial blood supply and a subsequent progressive loss of cardiac function. This process has been difficult to observe and thus their connection remains unclear. Here we used non-invasive myocardial blood flow sensitive CMR to show an impairment of resting myocardial perfusion in a mouse model of naturally occurring HCM. METHODS: We used a mouse model (DBA/2 J; D2 mouse strain) that spontaneously carries variants in the two most susceptible HCM genes-Mybpc3 and Myh7 and bears the key features of human HCM. The C57BL/6 J (B6) was used as a reference strain. Mice with either B6 or D2 backgrounds (male: n = 4, female: n = 4) underwent cine-CMR for functional assessment at 9.4 T. Left ventricular (LV) wall thickness was measured in end diastolic phase by cine-CMR. Quantitative myocardial perfusion maps (male: n = 5, female: n = 5 in each group) were acquired from arterial spin labelling (cine ASL-CMR) at rest. Myocardial perfusion values were measured by delineating different regions of interest based on the LV segmentation model in the mid ventricle of the LV myocardium. Directly after the CMR, the mouse hearts were removed for histological assessments to confirm the incidence of myocardial interstitial fibrosis (n = 8 in each group) and small vessel remodelling such as vessel density (n = 6 in each group) and perivascular fibrosis (n = 8 in each group). RESULTS: LV hypertrophy was more pronounced in D2 than in B6 mice (male: D2 LV wall thickness = 1.3 ± 0.1 mm vs B6 LV wall thickness = 1.0 ± 0.0 mm, p < 0.001; female: D2 LV wall thickness = 1.0 ± 0.1 mm vs B6 LV wall thickness = 0.8 ± 0.1 mm, p < 0.01). The resting global myocardial perfusion (myocardial blood flow; MBF) was lower in D2 than in B6 mice (end-diastole: D2 MBFglobal = 7.5 ± 0.6 vs B6 MBFglobal = 9.3 ± 1.6 ml/g/min, p < 0.05; end-systole: D2 MBFglobal = 6.6 ± 0.8 vs B6 MBFglobal = 8.2 ± 2.6 ml/g/min, p < 0.01). This myocardial microvascular dysfunction was observed and associated with a reduction in regional MBF, mainly in the interventricular septal and inferior areas of the myocardium. Immunofluorescence revealed a lower number of vessel densities in D2 than in B6 (D2 capillary = 31.0 ± 3.8% vs B6 capillary = 40.7 ± 4.6%, p < 0.05). Myocardial collagen volume fraction (CVF) was significantly higher in D2 LV versus B6 LV mice (D2 CVF = 3.7 ± 1.4% vs B6 CVF = 1.7 ± 0.7%, p < 0.01). Furthermore, a higher ratio of perivascular fibrosis (PFR) was found in D2 than in B6 mice (D2 PFR = 2.3 ± 1.0%, B6 PFR = 0.8 ± 0.4%, p < 0.01). CONCLUSIONS: Our work describes an imaging marker using cine ASL-CMR with a potential to monitor vascular and myocardial remodelling in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Coronary Circulation , Animals , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Female , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Predictive Value of Tests
15.
Clin Sci (Lond) ; 135(11): 1353-1367, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34013320

ABSTRACT

In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin-angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.


Subject(s)
Angiotensin II/metabolism , Erythropoiesis/physiology , Homeostasis/physiology , Renin-Angiotensin System/physiology , Animals , Brain/metabolism , Hypertension/metabolism , Kidney/metabolism , Mice , Mice, Transgenic , Receptor, Angiotensin, Type 1/metabolism , Renin/metabolism
16.
Exp Physiol ; 105(8): 1316-1325, 2020 08.
Article in English | MEDLINE | ID: mdl-32515106

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the role of the renin-angiotensin system with angiotensin II acting via its receptor AT1a in spinal cord injury-induced cardiac atrophy? What is the main finding and its importance? Knockout of AT1a did not protect mice that had undergone thoracic level 4 transection from cardiac atrophy. There were no histopathological signs but there was reduced load-dependent left ventricular function (lower stroke volume and cardiac output) with preserved ejection fraction. ABSTRACT: Spinal cord injury (SCI) leads to cardiac atrophy often accompanied by functional deficits. The renin-angiotensin system (RAS) with angiotensin II (AngII) signalling via its receptor AT1a might contribute to cardiac atrophy post-SCI. We performed spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation in female wild-type mice (WT, n = 27) and mice deficient in AT1a (Agtr1a-/- , n = 27). Echocardiography (0, 7, 21 and 28 days post-SCI) and histology and gene expression analyses at 1 and 2 months post-SCI were performed. We found cardiac atrophy post-SCI: reduced heart weight, reduced estimated left ventricular mass in Agtr1a-/- , and reduced cardiomyocyte diameter in WT mice. Although, the latter as well as stroke volume (SV) and cardiac output (CO) were reduced in Agtr1a-/- mice already at baseline, cardiomyocyte diameter was even smaller in injured Agtr1a-/- mice compared to injured WT mice. SV and CO were reduced in WT mice post-SCI. Ejection fraction and fractional shortening were preserved post-SCI in both genotypes. There were no histological signs of fibrosis and pathology in the cardiac sections of either genotype post-SCI. Gene expression of Agtr1a showed a trend for up-regulation at 2 months post-SCI; angiotensinogen was up-regulated at 2 month post-SCI in both genotypes. AngII receptor type 2 (Agtr2) was up- and down-regulated at 1 and 2 months post-SCI in WT mice, respectively, and Ang-(1-7) receptor (Mas) at 1 and 2 months post-SCI. Atrogin-1/MAFbx and MuRF1, atrophy markers, were not significantly up-regulated post-SCI. Our data show that lack of AT1a does not protect from cardiac atrophy post-SCI.


Subject(s)
Atrophy , Myocardium/pathology , Receptor, Angiotensin, Type 2/physiology , Spinal Cord Injuries/physiopathology , Angiotensin II , Animals , Echocardiography , Female , Heart/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Circulation ; 142(2): 133-149, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32524868

ABSTRACT

BACKGROUND: High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (PDE3A); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking. METHODS: We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways. RESULTS: We describe a novel mutation within a 15 base pair (bp) region of the PDE3A gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function. CONCLUSIONS: The mutated PDE3A gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hypertension/genetics , Mutation , Alleles , Amino Acid Substitution , Animals , Animals, Genetically Modified , Arterial Pressure , Biomarkers/blood , Biomarkers/urine , Brachydactyly/diagnosis , Brachydactyly/genetics , CRISPR-Cas Systems , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Disease Models, Animal , Enzyme Activation , Gene Targeting , Genetic Association Studies/methods , Genotype , Immunohistochemistry , Isoenzymes , Male , Pedigree , Phenotype , Radiography , Rats , Renin-Angiotensin System/genetics
18.
Front Physiol ; 11: 203, 2020.
Article in English | MEDLINE | ID: mdl-32226394

ABSTRACT

Experimental spinal cord injury (SCI) causes a morphological and functional deterioration of the heart, in which the renin-angiotensin system (RAS) might play a role. The recently discovered non-canonical axis of RAS with angiotensin-(1-7) and its receptor Mas, which is associated with cardioprotection could be essential to prevent damage to the heart following SCI. We investigated the cardiac consequences of SCI and the role of Mas in female wild-type (WT, n = 22) and mice deficient of Mas (Mas-/- , n = 25) which underwent spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation by echocardiography (0, 7, 21, and 28 days post-SCI), histology and gene expression analysis at 1 or 2 months post-SCI. We found left ventricular mass reduction with preserved ejection fraction (EF) and fractional shortening in WT as well as Mas-/- mice. Cardiac output was reduced in Mas-/- mice, whereas stroke volume (SV) was reduced in WT T4-Tx mice. Echocardiographic indices did not differ between the genotypes. Smaller heart weight (HW) and smaller cardiomyocyte diameter at 1 month post-SCI compared to sham mice was independent of genotype. The muscle-specific E3 ubiquitin ligases Atrogin-1/MAFbx and MuRF1 were upregulated or showed a trend for upregulation in WT mice at 2 months post-SCI, respectively. Angiotensinogen gene expression was upregulated at 1 month post-SCI and angiotensin II receptor type 2 downregulated at 2 month post-SCI in Mas-/- mice. Mas was downregulated post-SCI. Cardiac atrophy following SCI, not exacerbated by lack of Mas, is a physiological reaction as there were no signs of cardiac pathology and dysfunction.

19.
Proc Natl Acad Sci U S A ; 116(40): 19983-19988, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527264

ABSTRACT

Pancreatic ß cells store insulin within secretory granules which undergo exocytosis upon elevation of blood glucose levels. Crinophagy and autophagy are instead responsible to deliver damaged or old granules to acidic lysosomes for intracellular degradation. However, excessive consumption of insulin granules can impair ß cell function and cause diabetes. Atp6ap2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy. Here, we show that Cre recombinase-mediated conditional deletion of Atp6ap2 in mouse ß cells causes a dramatic accumulation of large, multigranular vacuoles in the cytoplasm, with reduction of insulin content and compromised glucose homeostasis. Loss of insulin stores and gigantic vacuoles were also observed in cultured insulinoma INS-1 cells upon CRISPR/Cas9-mediated removal of Atp6ap2. Remarkably, these phenotypic alterations could not be attributed to a deficiency in autophagy or acidification of lysosomes. Together, these data indicate that Atp6ap2 is critical for regulating the stored insulin pool and that a balanced regulation of granule turnover is key to maintaining ß cell function and diabetes prevention.


Subject(s)
Gene Deletion , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Proton-Translocating ATPases/genetics , Receptors, Cell Surface/genetics , Animals , Autophagy , CRISPR-Cas Systems , Cytosol/metabolism , Female , Gene Silencing , Insulinoma/metabolism , Lysosomes/metabolism , Male , Mice , Phenotype , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Rats , Receptors, Cell Surface/metabolism , Receptors, Estrogen/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/metabolism
20.
Mediators Inflamm ; 2019: 9086758, 2019.
Article in English | MEDLINE | ID: mdl-31360120

ABSTRACT

Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.


Subject(s)
Hypertension/metabolism , Kidney Diseases/metabolism , Lectins/metabolism , Macrophages/metabolism , beta-N-Acetylhexosaminidases/metabolism , Animals , Biomarkers/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Kidney/metabolism , Kidney Diseases/genetics , Lectins/genetics , Macrophage Activation/physiology , Male , Mice , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , beta-N-Acetylhexosaminidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...