Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 389
1.
J Proteome Res ; 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856018

Schizophrenia is a severe psychological disorder. The current diagnosis mainly relies on clinical symptoms and lacks laboratory evidence, which makes it very difficult to make an accurate diagnosis especially at an early stage. Plasma protein profiles of schizophrenia patients were obtained and compared with healthy controls using 4D-DIA proteomics technology. Furthermore, 79 DEPs were identified between schizophrenia and healthy controls. GO functional analysis indicated that DEPs were predominantly associated with responses to toxic substances and platelet aggregation, suggesting the presence of metabolic and immune dysregulation in patients with schizophrenia. KEGG pathway enrichment analysis revealed that DEPs were primarily enriched in the chemokine signaling pathway and cytokine receptor interactions. A diagnostic model was ultimately established, comprising three proteins, namely, PFN1, GAPDH and ACTBL2. This model demonstrated an AUC value of 0.972, indicating its effectiveness in accurately identifying schizophrenia. PFN1, GAPDH and ACTBL2 exhibit potential as biomarkers for the early detection of schizophrenia. The findings of our studies provide novel insights into the laboratory-based diagnosis of schizophrenia.

2.
RSC Adv ; 14(25): 17612-17626, 2024 May 28.
Article En | MEDLINE | ID: mdl-38828276

Co-loading of sonosensitizers and chemotherapeutic drugs into nanocarriers can improve the biocompatibilities, stabilities, and targeting of drugs and reduce the adverse reactions of drugs, providing a robust platform to orchestrate the synergistic interplay between chemotherapy and sonodynamic therapy (SDT) in cancer treatment. In this regard, biodegradable manganese dioxide (MnO2) has attracted widespread attention because of its unique properties in the tumor microenvironment (TME). Accordingly, herein, MnO2 nanoshells with hollow mesoporous structures (H-MnO2) were etched to co-load hematoporphyrin monomethyl ether (HMME) and doxorubicin (DOX), and DOX/HMME-HMnO2@bovine serum albumin (BSA) obtained after simple BSA modification of DOX/HMME-HMnO2 exhibited excellent hydrophilicity and dispersibility. H-MnO2 rapidly degraded in the weakly acidic TME, releasing loaded HMME and DOX, and catalysed the decomposition of H2O2 abundantly present in TME, producing oxygen (O2) in situ, significantly increasing O2 concentration and downregulating the hypoxia-inducible factor 1α (HIF-1α). After irradiation of the tumor area with low-frequency ultrasound, the drug delivery efficiency of DOX/HMME-HMnO2@BSA substantially increased, and the excited HMME generated a large amount of reactive oxygen species (ROS), which caused irreversible damage to tumor cells. Moreover, the cell death rate exceeded 60% after synergistic SDT-chemotherapy. Therefore, the pH-responsive nanoshells designed in this study can realize drug accumulation in tumor regions by responding to TME and augment SDT-chemotherapy potency for breast cancer treatment by improving hypoxia in tumors. Thus, this study provides theoretical support for the development of multifunctional nanocarriers and scientific evidence for further exploration of safer and more efficient breast cancer treatments.

3.
Research (Wash D C) ; 7: 0375, 2024.
Article En | MEDLINE | ID: mdl-38826565

Pushing the information states' acquisition efficiency has been a long-held goal to reach the measurement precision limit inside scattering spaces. Recent studies have indicated that maximal information states can be attained through engineered modes; however, partial intrusion is generally required. While non-invasive designs have been substantially explored across diverse physical scenarios, the non-invasive acquisition of information states inside dynamic scattering spaces remains challenging due to the intractable non-unique mapping problem, particularly in the context of multi-target scenarios. Here, we establish the feasibility of non-invasive information states' acquisition experimentally for the first time by introducing a tandem-generated adversarial network framework inside dynamic scattering spaces. To illustrate the framework's efficacy, we demonstrate that efficient information states' acquisition for multi-target scenarios can achieve the Fisher information limit solely through the utilization of the external scattering matrix of the system. Our work provides insightful perspectives for precise measurements inside dynamic complex systems.

4.
Molecules ; 29(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38792214

BACKGROUND: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. RESULTS: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 µM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 µg/mL. Time-kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. CONCLUSIONS: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin.


Flavonoids , Microbial Sensitivity Tests , Staphylococcus aureus , Flavonoids/pharmacology , Flavonoids/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
5.
Adv Mater ; : e2400797, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801201

A crucial aspect in shielding a variety of advanced electronic devices from electromagnetic detection involves controlling the flow of electromagnetic waves, akin to invisibility cloaks. Decades ago, the exploration of transformation optics heralded the dawn of modern invisibility cloaks, which has stimulated immense interest across various physical scenarios. However, most prior research is simplified to low-dimensional and stationary hidden objects, limiting their practical applicability in a dynamically changing world. This study develops a 3D large-scale intelligent cloak capable of remaining undetectable even in non-stationary conditions. By employing thousand-level reconfigurable full-polarization metasurfaces, this work has achieved an exceptionally high degree of freedom in sculpting the scattering waves as desired. Serving as the core computational unit, a hybrid inverse design enables the cloaked vehicle to respond in real-time, with a rapid reaction time of just 70 ms. These experiments integrate the cloaked vehicle with a perception-decision-control-execution system and evaluate its performance under random static positions and dynamic travelling trajectories, achieving a background scattering matching degree of up to 93.3%. These findings establish a general paradigm for the next generation of intelligent meta-devices in real-world settings, potentially paving the way for an era of "Electromagnetic Internet of Things."

6.
Heliyon ; 10(9): e29516, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707316

Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.

7.
J Am Chem Soc ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38597345

Deubiquitinase-targeting chimeras (DUBTACs) have been recently developed to stabilize proteins of interest, which is in contrast to targeted protein degradation (TPD) approaches that degrade disease-causing proteins. However, to date, only the OTUB1 deubiquitinase has been utilized to develop DUBTACs via an OTUB1 covalent ligand, which could unexpectedly compromise the endogenous function of OTUB1 owing to its covalent nature. Here, we show for the first time that deubiquitinase USP7 can be harnessed for DUBTAC development. Based on a noncovalent ligand of USP7, we developed USP7-based DUBTACs that stabilized the ΔF508-CFTR mutant protein as effectively as the previously reported OTUB1-based DUBTAC. Importantly, using two different noncovalent ligands of USP7, we developed the first AMPK DUBTACs that appear to selectively stabilize different isoforms of AMPKß, leading to elevated AMPK signaling. Overall, these results highlight that, in addition to OTUB1, USP7 can be leveraged to develop DUBTACs, thus significantly expanding the limited toolbox for targeted protein stabilization and the development of novel AMPK DUBTACs as potential therapeutics.

8.
Polymers (Basel) ; 16(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675038

The object of the study was to evaluate the suitability and trueness of the removable partial denture (RPD) framework fabricated by polyether ether ketone (PEEK) with the CAD-CAM technology in vitro. Four different types of dentition defects were selected. In each type, five PEEK RPD frameworks were fabricated by the CAD-CAM technology, while five Co-Cr RPD frameworks were made by traditional casting. The suitability of the framework was evaluated by silicone rubber film slice measurement and the three-dimensional image overlay method. The trueness of the PEEK framework was detected by the three-dimensional image overlay method. Data were statistically analyzed with the use of an independent samples t-test (α = 0.05). The suitability values by silicone rubber film slice measurement of the PEEK group were lower than those of the Co-Cr group in four types, with the differences indicating statistical significance (p < 0.05) in type one, type two, and type four. The suitability values using the three-dimensional image overlay method showed no statistical differences (p > 0.05) between the two groups in four types. The trueness values of the PEEK group were within the allowable range of clinical error. The suitability and trueness of the PEEK RPD framework fabricated by CAD-CAM technology met the requirements of the clinical prosthesis.

9.
Med ; 5(4): 291-310.e5, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38417440

BACKGROUND: Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS: Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS: Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS: Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING: This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/chemically induced , CD8-Positive T-Lymphocytes/metabolism , Microwaves/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects
10.
Proc Natl Acad Sci U S A ; 121(6): e2309096120, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38285934

Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.

11.
J Phys Chem A ; 128(4): 792-798, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38239066

Gas-phase reactions of [OsC2]+ and [IrC2]+ with methane at ambient temperature have been studied using quadrupole-ion trap mass spectrometry combined with quantum chemical calculations. Both [OsC2]+ and [IrC2]+ undergo carbon-atom exchange reactions with methane. The associated mechanisms for the two systems are found to be similar. The differences in the rates of carbon isotope exchange reactions of methane with [MC2]+ (M = Os and Ir) are explained by several factors like the energy barrier for the initial H3C-H bond breaking processes, the molecular dynamics, orbital interactions, and the H-binding energies of the pivotal steps. Besides, the number of participating valence orbitals might be one of the keys to regulate the rate in the key step. The present findings may provide useful ideas and inspiration for designing similar processes.

12.
ACS Appl Mater Interfaces ; 16(2): 2522-2529, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38166192

Viologen and Prussian blue (PB) exhibit good electrochromic properties, but certain limitations still exist. To improve the electrochromic properties of viologen, a viologen derivative 1,1'-bis(4-(bromomethyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (BBDV) was synthesized, and its electrochromic properties were investigated. Additionally, a flexible composite electrochromic device (FC-ECD) was prepared by using BBDV and PB as active materials. The structure of the FC-ECD was PET-ITO/gel electrolyte-BBDV/PB/PET-ITO. The applied voltage required for the FC-ECD was found to be lower than that of the ECD based on BBDV(FBBDV-ECD). Compared to FBBDV-ECD, FC-ECD exhibited a higher optical contrast (71.42%) and cyclic stability (89.51%). The FC-ECD exhibited multicolor changes under different applied voltages (ranging from -2.0 to +1.6 V). Especially, the color of the FC-ECD remained stable for 14 h after the removal of the applied voltage.

13.
CNS Neurosci Ther ; 30(2): e14361, 2024 02.
Article En | MEDLINE | ID: mdl-37491837

AIMS: We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS: Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS: Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION: These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.


Bipolar Disorder , Depressive Disorder, Major , Humans , Bipolar Disorder/diagnosis , Depressive Disorder, Major/diagnosis , Retrospective Studies , T-Lymphocyte Subsets , Biomarkers
14.
Chemistry ; 30(10): e202303832, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38085495

A novel method to prepare asymmetric amine ethers is reported. Tertiary amine alcohol hydrogen sulfate intermediates are prepared through a reactive distillation process, followed by the transesterification process to afford eventually asymmetric amine ethers. Experiments and DFT calculations revealed the essential roles the sulfate group plays in the highly selective monoesterification process. This clean method is tolerant towards various functional groups with good yields under mild condition, which is obviously superior compared to the conventional processes.

15.
Microbiol Spectr ; 12(1): e0323723, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38038452

IMPORTANCE: The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.


Benzophenanthridines , Escherichia coli Proteins , Escherichia coli , Isoquinolines , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/genetics
16.
Cancer Gene Ther ; 31(3): 454-463, 2024 Mar.
Article En | MEDLINE | ID: mdl-38135697

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.


Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , Signal Transduction , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tetraspanins/genetics , Tetraspanins/metabolism
17.
Cancer Med ; 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38133211

INTRODUCTION: Locoregional recurrent breast cancers have a poor prognosis. Little is known about the prognostic impact of immune microenvironment, and tertiary lymphoid structures (TLSs) in particular have not been reported. Thus, we aimed to characterize the immune microenvironment in locoregional recurrent breast tumors and to investigate its relationship with prognosis. METHODS: We retrospectively included 112 patients with locoregional recurrent breast cancer, and hematoxylin-eosin staining and immunohistochemical staining (CD3, CD4, CD8, CD19, CD38, and CD68) were performed on locoregional recurrent tumor samples. The association of immune cells and TLSs with progression-free survival (PFS) were analyzed by survival analysis. RESULTS: We found more immune cells in the peritumor than stroma. After grouping according to estrogen receptor (ER) status, a low level of peritumoral CD3+ cells in ER+ subgroup (p = 0.015) and a low level of stromal CD68+ cells in ER- subgroup (p = 0.047) were both associated with longer PFS. TLSs were present in 68% of recurrent tumors, and CD68+ cells within TLSs were significantly associated with PFS as an independent prognostic factor (p = 0.035). TLSs and immune cells (CD3, CD38, and CD68) within TLSs were associated with longer PFS in ER- recurrent tumors (p = 0.044, p = 0.012, p = 0.050, p < 0.001, respectively), whereas CD38+ cells within TLSs were associated with shorter PFS in ER+ recurrent tumors (p = 0.037). CONCLUSION: Our study proposes potential predictors for the clinical prognosis of patients with locoregional recurrent breast cancer, emphasizing the prognostic value of immune cells within TLSs, especially CD68+ cells.

18.
Chemphyschem ; 24(24): e202300603, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-37814927

The performance of heteronuclear cluster [AlFeO3 ]+ in activating methane has been explored by a combination of high-level quantum chemical calculations with gas-phase experiments. At room temperature, [AlFeO3 ]+ is a mixture of 7 [AlFeO3 ]+ and 5 [AlFeO3 ]+ , in which two states lead to different reactivity and chemoselectivity for methane activation. While hydrogen extracted from methane is the only product channel for the 7 [AlFeO3 ]+ /CH4 couple, 5 [AlFeO3 ]+ is able to convert this substrate to formaldehyde. In addition, the introduction of an external electric field may regulate the reactivity and product selectivity. The interesting doping effect of Fe and the associated electronic origins are discussed, which may guide one on the design of Fe-involved catalyst for methane conversion.

19.
Heliyon ; 9(9): e19959, 2023 Sep.
Article En | MEDLINE | ID: mdl-37809567

Purpose: The purpose of this study was to evaluate the fit and retention of clasps made of polyether ether ketone (PEEK) or cobalt-chromium alloy (Co-Cr) at different tooth positions in experimental simulations of in vitro wear and removal for 5 years. Methods: Standard crowns of the right mandibular first premolar (44) and first molar (46) were selected, and a circular three-arm clasp was designed, scanned and fabricated. Ten PEEK clasps were used as the experimental group, and 10 Co-Cr clasps were used as the control group. The seating channel was parallel to the side of the abutment base in both groups. The oral environment was simulated, and each clasp was tested in artificial saliva for 7200 cycles while the change in clasp retention force was recorded. The fit before and after the fatigue cycles was measured by the silicone rubber film copying method. Data were statistically analyzed using the independent samples t-test (α = 0.05). Results: Before circulation, the retention forces of the clasps at position 44 were 4.61 ± 0.91 N (PEEK) and 47.50 ± 10.59 N (Co-Cr), and the forces at position 46 were 3.38 ± 0.49 N (PEEK) and 28.79 ± 10.99 N (Co-Cr). After circulation, the retention forces of the clasps at position 44 were 4.15 ± 0.91 N (PEEK) and 13.90 ± 6.59 N (Co-Cr), and the forces at position 46 were 2.93 ± 0.25 N (PEEK) and 11.56 ± 3.93 N (Co-Cr). Before circulation, the fit of each clasp at the reference points (clasp tip, clasp arm, and occlusal rest) was between 41.70 µm and 170.29 µm, and after circulation, they were between 64.05 µm and 182.59 µm. The retention force and fit of the PEEK clasps did not undergo statistically significant changes from before to after circulation (P > 0.05). However, there were statistically significant (P < 0.05) decreases in the retention force of the Co-Cr clasps and the fit of the clasp tip during circulation. In addition, there was a sudden and large change in the retention force of the Co-Cr clasps after approximately 360 cycles. Conclusions: The retention force and suitability of the PEEK clasps met the requirements for clinical use during testing that simulated the in vitro wear and removal procedure for 5 years. Compared with the Co-Cr clasp, the PEEK clasp underwent less fatigue deformation, which makes it feasible for clinical applications.

20.
Clin Lab ; 69(9)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37702668

BACKGROUND: We aimed to analyze the infection characteristics of multidrug-resistant organisms (MDROs) and their resistance to antibiotics in patients with diabetic foot and provide guidance for the use of antibiotics in clinical practice. METHODS: The clinical data of 737 patients with diabetic foot who were hospitalized at our institution from February 2020 to January 2023 were retrospectively analyzed. Purulent secretions were collected from the patient's ulcers and bacterial culture, identification, and drug susceptibility tests were performed. The multidrug resistance (MDR) rate of different bacteria, composition ratio of MDROs, drug resistance characteristics of the main MDROs, distribution characteristics of multidrug-resistant gram-positive cocci and gram-negative bacilli in patients with different Wagner Grades, MDR in patients with different Wagner Grades, bacterial infection rate, and other indicators were analyzed. RESULTS: Pathogenic bacteria from wound secretions of 505 patients were cultured, and 509 pathogenic bacteria were obtained. Among the pathogenic bacteria, 225 strains were gram-positive cocci, of which 172 (76.44%) were MDROs, and 284 were gram-negative bacilli, of which 232 (81.69%) were MDROs. Among the 404 multidrug-resistant strains, gram-positive cocci and gram-negative bacilli accounted for 42.57% and 57.43%, respectively. The top five dominant MDROs were Staphylococcus aureus (18.56%), coagulase-negative Staphylococcus (10.89%), Escherichia coli (10.15%), Proteus mirabilis (8.17%), Proteus vulgaris (6.19%), and Pseudomonas aeruginosa (6.19%). Staphylococcus aureus and coagulase-negative Staphylococcus were more resistant to penicillin, oxacillin, erythromycin, azithromycin, and clarithromycin, with resistance rates of 50.0 - 95.0%. The resistance rates of E. coli to ampicillin, cefazolin, cefuroxime, ceftriaxone, and cefepime were > 75%. With an increase in Wagner Grade, the proportion of gram-negative bacilli among the pathogenic bacteria of MDROs increased significantly (p < 0.05), as did the infection rate of MDROs in patients with diabetic foot (χ2 = 14.045, p < 0.05). CONCLUSIONS: MDROs in patients with diabetic foot are mainly gram-negative bacilli, followed by gram-positive cocci. The drug resistance of various MDROs varies greatly. With the increase in Wagner Grade and MDR of diabetic foot patients, the infection rate of drug-resistant bacteria has increased significantly. Therefore, clinicians should use drugs rationally according to drug sensitivity results.


Diabetes Mellitus , Diabetic Foot , Staphylococcal Infections , Humans , Drug Resistance, Multiple, Bacterial , Diabetic Foot/drug therapy , Coagulase , Escherichia coli , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Oxacillin , Staphylococcus
...