Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 16(10): 3787-3804, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28792770

ABSTRACT

Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.


Subject(s)
Brain/metabolism , Munc18 Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Proteomics , Aminopeptidases/deficiency , Aminopeptidases/genetics , Autopsy , Biomarkers/cerebrospinal fluid , Biomarkers/chemistry , Biomarkers/metabolism , Brain/pathology , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Humans , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Molecular Chaperones/genetics , Munc18 Proteins/deficiency , Mutation , Neuronal Ceroid-Lipofuscinoses/cerebrospinal fluid , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Serine Proteases/deficiency , Serine Proteases/genetics , Thiolester Hydrolases/deficiency , Thiolester Hydrolases/genetics , Tripeptidyl-Peptidase 1
2.
Mol Cell Proteomics ; 16(2): 194-212, 2017 02.
Article in English | MEDLINE | ID: mdl-27923875

ABSTRACT

Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene.


Subject(s)
Liver/metabolism , Lysosomal Storage Diseases/metabolism , Neurodegenerative Diseases/metabolism , Proteome/analysis , Proteomics/methods , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Databases, Protein , Humans , Infant , Lysosomal Storage Diseases/genetics , Lysosomes/metabolism , Mass Spectrometry , Mutation , Neurodegenerative Diseases/genetics , Rats , Sequence Analysis, DNA , Subcellular Fractions/metabolism
3.
Food Funct ; 6(7): 2303-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26073176

ABSTRACT

Chicken egg yolk is a rich source of nutrients providing high quality proteins, vitamins, minerals, carotenoids and antioxidants. Chicken egg yolk, recovered from whole egg within 24 hours post-lay has been utilized as a starting material in the preparation of a dietary supplement that has been demonstrated to lead to gains in muscle mass in a human clinical study. Further, an oil derived from chicken egg yolk has been utilized as a topical agent to treat third degree burn injury. The molecular changes that take place in fertilized, chicken egg yolk during the first 24 hours post-lay are not well understood. By studying how the protein composition of egg yolk varies with fertility status, one can utilize this knowledge to develop egg yolk-based products that have been optimized for specific applications. In this study, a direct quantitative comparison was made between the proteome of fertilized chicken egg yolk and the proteome of unfertilized chicken egg yolk, both maintained at 20 °C and analyzed within 24 hours post-lay. Egg yolk proteins from each fertility state were digested with trypsin, labeled with distinct chemical labels (tandem mass tag reagents) and then combined in a 1 : 1 ratio. A TMT-labeled tryptic digest derived from chicken egg yolk proteins (fertilized and unfertilized) was separated using high-pH/low-pH reverse-phase chromatography and analyzed using mass spectrometry. 225 protein identifications were made from this TMT-labeled tryptic digest based on a minimum of 2 unique peptides observed per protein. 9 proteins increased in abundance in fertilized egg yolk relative to unfertilized egg yolk and 9 proteins decreased in abundance in fertilized egg yolk relative to unfertilized egg yolk. Some proteins that increased in abundance in fertilized egg yolk play an important role in angiogenesis (pleiotrophin, histidine rich glycoprotein) and defense against pathogens (mannose-binding lectin, ß-defensin 11, serum amyloid P-component, ovostatin). Based on this study, fertilized chicken egg yolk may be more useful as a starting material relative to unfertilized chicken egg yolk for the purpose of enriching or isolating proteins with pro-angiogenic and anti-microbial properties.


Subject(s)
Egg Proteins/chemistry , Egg Yolk/chemistry , Proteome/chemistry , Amino Acid Sequence , Animals , Chickens , Chromatography, Reverse-Phase/instrumentation , Egg Proteins/genetics , Egg Proteins/metabolism , Egg Yolk/metabolism , Fertilization , Molecular Sequence Data , Proteome/genetics , Proteome/metabolism , Sequence Alignment , Tandem Mass Spectrometry , Temperature
4.
Microb Cell Fact ; 14: 40, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25880561

ABSTRACT

BACKGROUND: The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lipases, and it has four potential N-linked glycosylation sites. The aim of the present study was to determine whether RCL undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in RCL expression and function. RESULTS: In this study, we demonstrated that RCL expressed in Pichia pastoris was N-glycosylated at the sites N-14, N-48 and N-60. The majority of the sites N-14 and N-60 were glycosylated, but the glycosylation degree of the site N-48 was only a very small portion. The glycan on N-60 played a key role in the expression and secretion of RCL. RT-PCR results showed that the mRNA level of proRCLCN60Q remained unchanged even though the protein secretion was hampered. Although the N-glycan on N-14 had no effect on the secretion of RCL, this glycan was beneficial for the lipase catalytic activity. On the other hand, the little amount of N-glycan on N-48 had no effect both on the secretion and activity of RCL in P. pastoris. Moreover, the thermostability analysis of RCL revealed that the lipase with more N-glycan was more thermostable. CONCLUSIONS: RCL was N-glycosylated when expressed in P. pastoris. The N-glycans of RCL on the different sites had different functions for the secretion and enzymatic properties of the lipase. Our report may also provide theoretical support for the improvement of enzyme expression and stability based on the N-linked glycosylation modification to meet the future needs of the biotechnological industry.


Subject(s)
Lipase/metabolism , Pichia/metabolism , Rhizopus/enzymology , Glycosylation , Protein Engineering
5.
J Biol Chem ; 285(5): 3360-70, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19955174

ABSTRACT

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an alpha(2)beta(2)gamma(2) hexamer that mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Using a multifaceted approach, including analysis of acid hydrolase phosphorylation in mice and fibroblasts lacking the gamma subunit along with kinetic studies of recombinant alpha(2)beta(2)gamma(2) and alpha(2)beta(2) forms of the transferase, we have explored the function of the alpha/beta and gamma subunits. The findings demonstrate that the alpha/beta subunits recognize the protein determinant of acid hydrolases in addition to mediating the catalytic function of the transferase. In mouse brain, the alpha/beta subunits phosphorylate about one-third of the acid hydrolases at close to wild-type levels but require the gamma subunit for optimal phosphorylation of the rest of the acid hydrolases. In addition to enhancing the activity of the alpha/beta subunits toward a subset of the acid hydrolases, the gamma subunit facilitates the addition of the second GlcNAc-P to high mannose oligosaccharides of these substrates. We postulate that the mannose 6-phosphate receptor homology domain of the gamma subunit binds and presents the high mannose glycans of the acceptor to the alpha/beta catalytic site in a favorable manner.


Subject(s)
Transferases (Other Substituted Phosphate Groups)/chemistry , Animals , Brain/metabolism , Catalytic Domain , Cattle , Fibroblasts/metabolism , Humans , Kinetics , Mannose/chemistry , Mice , Oligosaccharides/chemistry , Phosphorylation , Protein Structure, Tertiary , Receptor, IGF Type 2/chemistry , Recombinant Proteins/chemistry , Transferases (Other Substituted Phosphate Groups)/metabolism
6.
Mol Cell Proteomics ; 7(1): 58-70, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17848585

ABSTRACT

Most mammalian cells contain two types of mannose 6-phosphate (Man-6-P) receptors (MPRs): the 300 kDa cation-independent (CI) MPR and 46 kDa cation-dependent (CD) MPR. The two MPRs have overlapping function in intracellular targeting of newly synthesized lysosomal proteins, but both are required for efficient targeting. Despite extensive investigation, the relative roles and specialized functions of each MPR in targeting of specific proteins remain questions of fundamental interest. One possibility is that most Man-6-P glycoproteins are transported by both MPRs, but there may be subsets that are preferentially transported by each. To investigate this, we have conducted a proteomics analysis of serum from mice lacking either MPR with the reasoning that lysosomal proteins that are selectively transported by a given MPR should be preferentially secreted into the bloodstream in its absence. We purified and identified Man-6-P glycoproteins and glycopeptides from wild-type, CDMPR-deficient, and CIMPR-deficient mouse serum and found both lysosomal proteins and proteins not currently thought to have lysosomal function. Different mass spectrometric approaches (spectral count analysis of nanospray LC-MS/MS experiments on unlabeled samples and LC-MALDI/TOF/TOF experiments on iTRAQ-labeled samples) revealed a number of proteins that appear specifically elevated in serum from each MPR-deficient mouse. Man-6-P glycoforms of cellular repressor of E1A-stimulated genes 1, tripeptidyl peptidase I, and heparanase were elevated in absence of the CDMPR and Man-6-P glycoforms of alpha-mannosidase B1, cathepsin D, and prosaposin were elevated in the absence of the CIMPR. Results were confirmed by Western blot analyses for select proteins. This study provides a comparison of different quantitative mass spectrometric approaches and provides the first report of proteins whose cellular targeting appears to be MPR-selective under physiological conditions.


Subject(s)
Proteins/metabolism , Proteomics/methods , Receptor, IGF Type 2/metabolism , Serum/chemistry , Animals , Blotting, Western , Brain/metabolism , Electrophoresis, Gel, Two-Dimensional , Glycoproteins/blood , Glycoproteins/isolation & purification , Mannosephosphates/isolation & purification , Mannosephosphates/metabolism , Mass Spectrometry , Mice , Mice, Mutant Strains , Protein Transport , Proteins/chemistry , Proteins/isolation & purification , Receptor, IGF Type 2/chemistry , Reproducibility of Results , Tripeptidyl-Peptidase 1
7.
Mol Cell Proteomics ; 5(4): 686-701, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16399764

ABSTRACT

Most newly synthesized soluble lysosomal proteins contain mannose 6-phosphate (Man-6-P), a specific carbohydrate modification that is recognized by Man-6-P receptors (MPRs) that direct targeting to the lysosome. A number of proteomic studies have focused on lysosomal proteins, exploiting the fact that Man-6-P-containing forms can be purified by affinity chromatography on immobilized MPRs. These studies have identified many known lysosomal proteins as well as many proteins not previously classified as lysosomal. The latter are of considerable biological interest with potential implications for lysosomal function and as candidates for lysosomal storage diseases of unknown etiology. However, a significant problem in interpreting the biological relevance of such proteins has been in distinguishing true Man-6-P glycoproteins from simple contaminants and from proteins associated with true Man-6-P glycoproteins (e.g. protease inhibitors and lectins). In this report, we describe a mass spectrometric approach to the verification of Man-6-phosphorylation based upon LC-MS of MPR-purified proteolytic glycopeptides. This provided a useful tool in validating novel MPR-purified proteins as true Man-6-P glycoproteins and also allowed identification of low abundance components not observed in the analysis of the total Man-6-P glycoprotein mixture. In addition, this approach allowed the global mapping of 99 Man-6-phosphorylation sites from 44 known lysosomal proteins purified from mouse and human brain. This information is likely to provide useful insights into protein determinants for this modification and may be of significant value in protein engineering approaches designed to optimize protein delivery to the lysosome in therapeutic applications such as gene and enzyme replacement therapies.


Subject(s)
Mannose/metabolism , Proteins/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Chromatography, Affinity , Humans , Mice , Molecular Sequence Data , Phosphorylation , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization
8.
Nat Genet ; 31(3): 276-8, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12089525

ABSTRACT

Congenital cataracts cause 10-30% of all blindness in children, with one-third of cases estimated to have a genetic cause. Lamellar cataract is the most common type of infantile cataract. We carried out whole-genome linkage analysis of Chinese individuals with lamellar cataract, and found that the disorder is associated with inheritance of a 5.11-cM locus on chromosome 16. This locus coincides with one previously described for Marner cataract. We screened individuals of three Chinese families for mutations in HSF4 (a gene at this locus that encodes heat-shock transcription factor 4) and discovered that in each family, a distinct missense mutation, predicted to affect the DNA-binding domain of the protein, segregates with the disorder. We also discovered an association between a missense mutation and Marner cataract in an extensive Danish family. We suggest that HSF4 is critical to lens development.


Subject(s)
Cataract/genetics , DNA-Binding Proteins/genetics , Mutation, Missense , Transcription Factors/genetics , Amino Acid Sequence , Animals , Cataract/congenital , Child, Preschool , Chromosomes, Human, Pair 16 , Conserved Sequence , Female , Genetic Linkage , Genome, Human , Heat Shock Transcription Factors , Humans , Infant , Male , Mice , Molecular Sequence Data , Pedigree , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL