Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
BMC Plant Biol ; 24(1): 819, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215284

ABSTRACT

BACKGROUND: Salt stress is a major abiotic factor that affects the distribution and growth of plants. Asparagus officinalis is primarily resistant to salt stress and is suitable for cultivation in saline-alkali soil. RESULTS: The study integrated the morphology, physiological indexes, and transcriptome of A. officinalis exposed to different levels of NaCl, with the aim of understanding its biological processes under salt stress. The findings indicated that exposure to salt stress led to decreases in the height and weight of A. officinalis plants. Additionally, the levels of POD and SOD, as well as the amounts of MDA, proline, and soluble sugars, showed an increase, whereas the chlorophyll content decreased. Analysis of the transcriptome revealed that 6,203 genes that showed differential expression at different salt-stress levels. Various TFs, including FAR1, MYB, NAC, and bHLH, exhibited differential expression under salt stress. KEGG analysis showed that the DEGs were primarily associated with the plant hormone signal transduction and lignin biosynthesis pathways. CONCLUSION: These discoveries provide a solid foundation for an in-depth exploration of the pivotal genes, including Aux/IAA, TCH4, COMT, and POD, among others, as well as the pathways involved in asparagus's salt stress responses. Consequently, they have significant implications for the future analysis of the molecular mechanisms underlying asparagus's response to salt stress.


Subject(s)
Asparagus Plant , Gene Expression Profiling , Salt Stress , Asparagus Plant/genetics , Asparagus Plant/drug effects , Salt Stress/genetics , Transcriptome , Gene Expression Regulation, Plant/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant
2.
Plant Physiol Biochem ; 215: 108980, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102766

ABSTRACT

Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.


Subject(s)
Anthocyanins , Asparagus Plant , Gene Expression Regulation, Plant , Transcriptome , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Asparagus Plant/genetics , Asparagus Plant/metabolism , Pigmentation/genetics , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Metabolomics
3.
Front Plant Sci ; 15: 1385165, 2024.
Article in English | MEDLINE | ID: mdl-38957603

ABSTRACT

Clematis is the queen of the vines, being an ornamental plant with high economic value. Waterlogging stress reduces the ornamental value of the plant and limits its application. Melatonin plays an important role in plant resistance to abiotic stresses. In this study, the physiological responses and gene expression levels of two wild species, namely, Clematis tientaiensis and Clematis lanuginosa, and two horticultural varieties, namely, 'Sen-No-Kaze' and 'Viva Polonia,' under waterlogging stress were analyzed to determine the effect of melatonin on waterlogging tolerance. The results showed that the waterlogging tolerances of C. lanuginosa and 'Sen-No-Kaze' were relatively poor, but were significantly improved by concentrations of 100 µmol·L-1 and 50 µmol·L-1 melatonin. C. tientaiensis and 'Viva Polonia' had relatively strong tolerance to waterlogging, and this was significantly improved by 200 µmol·L-1 melatonin. Under waterlogging stress, the relative conductivity and H2O2 content of Clematis increased significantly; the photosynthetic parameters and chlorophyll contents were significantly decreased; photosynthesis was inhibited; the contents of soluble protein and soluble sugars were decreased. Effective improvement of waterlogging tolerance after exogenous melatonin spraying, the relative conductivity was decreased by 4.05%-27.44%; the H2O2 content was decreased by 3.84%-23.28%; the chlorophyll content was increased by 35.59%-103.36%; the photosynthetic efficiency was increased by 25.42%-45.86%; the antioxidant enzyme activities of APX, POD, SOD, and CAT were increased by 28.03%-158.61%; the contents of proline, soluble protein, and soluble sugars were enhanced, and cell homeostasis was improved. Transcription sequencing was performed on wild Clematis with differences in waterlogging tolerance, and nine transcription factors were selected that were highly correlated with melatonin and that had the potential to improve waterlogging tolerance, among which LBD4, and MYB4 were significantly positively correlated with the antioxidant enzyme system, and bHLH36, DOF36, and WRKY4 were significantly negatively correlated. Photosynthetic capacity was positively correlated with DOF36 and WRKY4 while being significantly negatively correlated with MYB4, MOF1, DOF47, REV1 and ABR1. Melatonin could enhance the flooding tolerance of Clematis by improving photosynthetic efficiency and antioxidant enzyme activity. This study provides an important basis and reference for the application of melatonin in waterlogging-resistant breeding of Clematis.

4.
Int J Biol Macromol ; 277(Pt 2): 134139, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059533

ABSTRACT

The green radish (Raphanus sativus L.) contains abundant chlorophyll (Chl). DOF-type transcription factor OBF BINDING PROTEIN (OBP) plays crucial functions in plant growth, development, maturation and responses to various abiotic stresses. However, the metabolism by which OBP transcription factors regulate light-induced Chl metabolism in green radish is not well understood. In this study, six OBP genes were identified from the radish genome, distributed unevenly across five chromosomes. Among these genes, RsOBP2a showed significantly higher expression in the green flesh compared to the white flesh of green radish. Analysis of promoter elements suggested that RsOBPs might be involved in stress responses, particularly in light-related processes. Overexpression of RsOBP2a led to increase Chl levels in cotyledons and adventitious roots of radish, while silencing RsOBP2a expression through TYMV-induced gene silencing accelerated leaf senescence. Further investigations revealed that RsOBP2a was localized in the nucleus and served as a transcriptional repressor. RsOBP2a was induced by light and directly suppressed the expression of STAYGREEN (SGR) and RED CHLOROPHYLL CATABOLITE REDUCTASE (RCCR), thereby delaying senescence in radish. Overall, a novel regulatory model involving RsOBP2a, RsSGR, and RsRCCR was proposed to govern Chl metabolism in response to light, offering insights for the enhancement of green radish germplasm.


Subject(s)
Chlorophyll , Gene Expression Regulation, Plant , Plant Proteins , Raphanus , Transcription Factors , Raphanus/genetics , Raphanus/metabolism , Chlorophyll/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Phylogeny , Light
5.
Genes (Basel) ; 15(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38674420

ABSTRACT

To meet the large demand for Asparagus officinalis in the spring market and improve the economic benefits of cultivating asparagus, we explored the molecular mechanism underlying the response of A. officinalis to low temperature. First, "Fengdao No. 1" was screened out under low-temperature treatment. Then, the transcriptome sequencing and hormone detection of "Fengdao No. 1" and "Grande" (control) were performed. Transcriptome sequencing resulted in screening out key candidate genes, while hormone analysis indicated that ABA was important for the response to low temperature. The combined analysis indicated that the AoMYB56 gene may regulate ABA in A. officinalis under low temperature. And the phylogenetic tree was constructed, and subcellular localisation was performed. From these results, we speculated that the AoMYB56 gene may regulate ABA in A. officinalis. The results of this research provide a theoretical basis for the further exploration of low-temperature response in A. officinalis.


Subject(s)
Asparagus Plant , Cold-Shock Response , Gene Expression Regulation, Plant , Asparagus Plant/genetics , Cold-Shock Response/genetics , Phylogeny , Plant Proteins/genetics , Cold Temperature , Abscisic Acid/metabolism , Transcriptome/genetics
6.
Sci Rep ; 13(1): 1356, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693990

ABSTRACT

Sphaeropteris lepifera is a tree fern in the Cyatheaceae, a family that has played an important role in the evolution of plant systems. This study aimed to analyze the complete chloroplast genome of S. lepifera and compared it with previously published chloroplast genomes Cyatheaceae family. The chloroplast genome of S. lepifera comprised 162,114 bp, consisting of a large single copy (LSC) region of 86,327 bp, a small single copy (SSC) region of 27,731 bp and a pair of inverted repeats (IRa and IRb) of 24,028 bp each. The chloroplast genome encoded 129 genes, comprising 32 transfer RNAs, 8 ribosomal RNAs, and 89 protein-coding genes. Comparison of the genomes of 7 Cyatheaceae plants showed that the chloroplast genome of S. lepifera was missing the gene trnV-UAC. Expansion of the SSC region led to the difference in the chloroplast genome size of S. lepifera. Eight genes, atpI, ccsA, petA, psaB, rpl16, rpoA, rpoC1, and ycf2 have high nucleic acid diversity and can be regarded as potential molecular markers. The genes trnG-trnR and atpB were suitable for DNA barcodes between different communities of S. lepifera. The S. lepifera groups in Zhejiang Province probably diffused from Pingtan and Ningde, Fujian. The results will provide a basis for species identification, biological studies, and endangerment mechanism of S. lepifera.


Subject(s)
Ferns , Genome, Chloroplast , Ferns/genetics , Phylogeny , Molecular Structure , Chloroplasts/genetics
7.
Genes (Basel) ; 13(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36140767

ABSTRACT

Gladiolus is an important ornamental plant that is one of the world's four most-grown cut flowers. Gladiolus gandavensis has only been found in the Cangnan County (Zhejiang Province) of China, which is recorded in the "Botanical". To explore the origin of G. gandavensis, chloroplast genome sequencing was conducted. The results indicated that a total of 151,654 bp of circular DNA was obtained. The chloroplast genome of G. gandavensis has a quadripartite structure (contains a large single-copy (LSC) region (81,547 bp), a small single-copy region (SSC) (17,895 bp), and two inverted repeats (IRs) (IRa and IRb, 52,212 bp)), similar to that of other species. In addition, a total of 84 protein-coding genes, 8 rRNA-encoding genes, and 38 tRNA-encoding genes were present in the chloroplast genome. To further study the structural characteristics of the chloroplast genome in G. gandavensis, a comparative analysis of eight species of the Iridaceae family was conducted, and the results revealed higher similarity in the IR regions than in the LSC and SSC regions. In addition, 265 simple sequence repeats (SSRs) were detected in this study. The results of the phylogenetic analysis indicated that the chloroplast genome of G. gandavensis has high homology with the Crocus cartwrightianus and Crocus sativus chloroplast genomes. Genetic analysis based on the rbcl sequence among 49 Gladiolus species showed that samples 42, 49, 50, and 54 had high homology with the three samples from China (64, 65, and 66), which might be caused by chance similarity in genotypes. These results suggest that G. gandavensis may have originated from South Africa.


Subject(s)
Genome, Chloroplast , Iridaceae , DNA, Circular , Iridaceae/genetics , Phylogeny , RNA, Transfer/genetics
9.
Genes (Basel) ; 13(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35328022

ABSTRACT

Masson pine (Pinus massoniana) is a core industrial tree species that is used for afforestation in southern China. Previous studies have shown that Auxin Response Factors (ARFs) are involved in the growth and development of various species, but the function of ARFs in Masson pine is unclear. In this research, we cloned and identified Masson pine ARF6 cDNA (PmARF6). The results showed that PmARF6 encodes a protein of 681 amino acids that is highly expressed in female flowers. Subcellular analysis showed that the PmARF6 protein occurred predominantly in the nucleus and cytomembrane of Masson pine cells. Compared with wild-type (WT) Arabidopsis, transgenic Arabidopsis plants overexpressing PmARF6 had fewer rosette leaves, and their flower development was slower. These results suggest that overexpression of PmARF6 may inhibit the flower and leaf development of Masson pine and provide new insights into the underlying developmental mechanism.


Subject(s)
Arabidopsis , Pinus , Arabidopsis/genetics , China , Plant Leaves/genetics , Trees
10.
BMC Plant Biol ; 22(1): 138, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35321648

ABSTRACT

BACKGROUND: Clematis species are attractive ornamental plants with a variety of flower colors and patterns. Heat stress is one of the main factors restricting the growth, development, and ornamental value of Clematis. Clematis lanuginosa and Clematis crassifolia are large-flowered and evergreen Clematis species, respectively, that show different tolerance to heat stress. We compared and analyzed the transcriptome of C. lanuginose and C. crassifolia under heat stress to determine the regulatory mechanism(s) of resistance. RESULTS: A total of 1720 and 6178 differentially expressed genes were identified from C. lanuginose and C. crassifolia, respectively. The photosynthesis and oxidation-reduction processes of C. crassifolia were more sensitive than C. lanuginose under heat stress. Glycine/serine/threonine metabolism, glyoxylic metabolism, and thiamine metabolism were important pathways in response to heat stress in C. lanuginose, and flavonoid biosynthesis, phenylalanine metabolism, and arginine/proline metabolism were the key pathways in C. crassifolia. Six sHSPs (c176964_g1, c200771_g1, c204924_g1, c199407_g2, c201522_g2, c192936_g1), POD1 (c200317_g1), POD3 (c210145_g2), DREB2 (c182557_g1), and HSFA2 (c206233_g2) may be key genes in the response to heat stress in C. lanuginose and C. crassifolia. CONCLUSIONS: We compared important metabolic pathways and differentially expressed genes in response to heat stress between C. lanuginose and C. crassifolia. The results increase our understanding of the response mechanism and candidate genes of Clematis under heat stress. These data may contribute to the development of new Clematis varieties with greater heat tolerance.


Subject(s)
Clematis , Transcriptome , Clematis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Heat-Shock Response/genetics
11.
Front Plant Sci ; 12: 624875, 2021.
Article in English | MEDLINE | ID: mdl-33841457

ABSTRACT

Clematis is a superior perennial ornamental vine known for varied colors and shapes of its flowers. Clematis crassifolia is sensitive to high temperature, whereas Clematis cadmia has a certain temperature adaptability. Here we analyzed the potential regulatory mechanisms of C. crassifolia and C. cadmia in response to heat stress by studying the photosynthesis, antioxidant parameters, amino acids, and gene expression patterns under three temperature treatments. Heat stress caused the fading of leaves; decreased net photosynthetic rate, stomatal conductance, superoxide dismutase, and catalase activity; increased 13 kinds of amino acids content; and up-regulated the expression of seven genes, including C194329_G3, C194434_G1, and C188817_g1, etc., in C. crassifolia plants. Under the treatments of heat stress, the leaf tips of C. cadmia were wilted, and the net photosynthetic rate and soluble protein content decreased, with the increase of 12 amino acids content and the expression of c194329_g3, c194434_g1, and c195983_g1. Our results showed that C. crassifolia and C. cadmia had different physiological and molecular response mechanisms to heat stress during the ecological adaptation.

12.
Molecules ; 25(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276485

ABSTRACT

Clematis florida is a popular ornamental vine species known for diverse colors and shapes of its flowers but not for scent. Here we investigated the composition and biosynthesis of floral scent in 'Kaiser', a fragrant cultivar of C. florida that has sterile flowers. Volatile profiling revealed that flowers of 'Kaiser' emit more than 20 compounds, with monoterpenes being most abundant. Among the three floral organs, namely sepals, transformed-petals, and ovaries, ovaries had the highest rates of total volatile emission. To determine the molecular mechanism underlying floral scent biosynthesis in 'Kaiser', we sequenced a flower transcriptome and searched the transcriptome for terpene synthase genes (TPSs), which are key genes for terpene biosynthesis. Among the TPS genes identified, three were putative intact full-length genes and were designated CfTPS1, CfTPS2, and CfTPS3. Phylogenetic analysis placed CfTPS1, CfTPS2, and CfTPS3 to the TPS-g, TPS-b, and TPS-a subfamily, respectively. Through in vitro enzyme assays with Escherichia coli-expressed recombinant proteins, both CfTPS1 and CfTPS2 were demonstrated to catalyze the conversion of geranyl diphosphate to linalool, the most abundant constituent of C. florida floral scent. In addition, CfTPS1 and CfTPS2 produced the sesquiterpene nerolidol from (E,E)-farnesyl diphosphate. CfTPS3 showed sesquiterpene synthase activity and produced multiple products in vitro. All three CfTPS genes showed higher levels of expression in sepals than those in transformed-petals and ovaries. Our results show that despite being sterile, the flowers of 'Kaiser' have normal mechanisms for floral scent biosynthesis that make the flowers fragrant.


Subject(s)
Biosynthetic Pathways , Clematis/chemistry , Flowers/chemistry , Odorants/analysis , Plant Infertility , Amino Acid Sequence , Biocatalysis , Clematis/genetics , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Annotation , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Terpenes/metabolism , Transcriptome/genetics , Volatile Organic Compounds/analysis
13.
Sci Rep ; 9(1): 17842, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780789

ABSTRACT

Clematis crassifolia and Clematis cadmia Buch.-Ham. ex Hook.f. & Thomson are herbaceous vine plants native to China. C. crassifolia is distributed in shaded areas, while C. cadmia mostly grows in bright, sunny conditions in mountainous and hilly landscapes. To understand the potential mechanisms involved in the irradiance responses of C. crassifolia and C. cadmia, we conducted a pot experiment under three irradiance treatments with natural irradiation and two different levels of shading. Various growth, photosynthetic, oxidative and antioxidative parameters and the relative expression of irradiance-related genes were examined. In total, 15 unigenes were selected for the analysis of gene expression. The exposure of C. crassifolia to high irradiance resulted in growth inhibition coupled with increased levels of chlorophyll, increased catalase, peroxidase, and superoxide dismutase activity and increased expression of c144262_g2, c138393_g1 and c131300_g2. In contrast, under high irradiance conditions, C. cadmia showed an increase in growth and soluble protein content accompanied by a decrease in the expression of c144262_g2, c133872_g1, and c142530_g1, suggesting their role in the acclimation of C. cadmia to a high-irradiance environment. The 15 unigenes were differentially expressed in C. crassifolia and C. cadmia under different irradiance conditions. Thus, our study revealed that there are essential differences in the irradiance adaptations of C. crassifolia and C. cadmia due to the differential physiological and molecular mechanisms underlying their irradiance responses, which result from their long-term evolution in contrasting habitats.


Subject(s)
Adaptation, Physiological , Clematis/genetics , Sunlight , Transcriptome , Clematis/growth & development , Clematis/radiation effects , Gene Expression Regulation, Plant , Oxidative Stress , Photosynthesis
14.
Physiol Mol Biol Plants ; 24(2): 231-238, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29515317

ABSTRACT

Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

15.
Front Plant Sci ; 8: 600, 2017.
Article in English | MEDLINE | ID: mdl-28484476

ABSTRACT

Salt stress critically affects the physiological processes and morphological structure of plants, resulting in reduced plant growth. Salicylic acid (SA) is an important signal molecule that mitigates the adverse effects of salt stress on plants. Large pink Dianthus superbus L. (Caryophyllaceae) usually exhibit salt-tolerant traits under natural conditions. To further clarify the salt-tolerance level of D. superbus and the regulating mechanism of exogenous SA on the growth of D. superbus under different salt stresses, we conducted a pot experiment to examine the biomass, photosynthetic parameters, stomatal structure, chloroplast ultrastructure, reactive oxygen species (ROS) concentrations, and antioxidant activities of D. superbus young shoots under 0.3, 0.6, and 0.9% NaCl conditions, with and without 0.5 mM SA. D. superbus exhibited reduced growth rate, decreased net photosynthetic rate (Pn), increased relative electric conductivity (REC) and malondialdehyde (MDA) contents, and poorly developed stomata and chloroplasts under 0.6 and 0.9% salt stress. However, exogenously SA effectively improved the growth, photosynthesis, antioxidant enzyme activity, and stoma and chloroplast development of D. superbus. However, when the plants were grown under severe salt stress (0.9% NaCl condition), there was no significant difference in the plant growth and physiological responses between SA-treated and non-SA-treated plants. Therefore, our research suggests that exogenous SA can effectively counteract the adverse effect of moderate salt stress on D. superbus growth and development.

SELECTION OF CITATIONS
SEARCH DETAIL