Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049946

ABSTRACT

Ag/TiO2/muscovite (ATM) composites were prepared by the sol-gel method and the effects of Ag modification on the structure and photocatalytic performance were investigated. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller surface area (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), photoluminescence spectra (PL) and ultraviolet-visible diffuse reflectance spectra (DRS). The photocatalytic activity of the obtained composites was evaluated by taking 100 mL (10 mg/L) of Rhodamine B (RhB) aqueous solution as the target pollutant. The muscovite (Mus) loading releases the agglomeration of TiO2 particles and the specific surface area increases from 17.6 m2/g (pure TiO2) to 39.5 m2/g (TiO2/Mus). The first-order reaction rate constant increases from 0.0009 min-1 (pure TiO2) to 0.0074 min-1 (150%TiO2/Mus). Ag element exists in elemental silver. The specific surface area of 1-ATM further increases to 66.5 m2/g. Ag modification promotes the separation of photogenerated electrons and holes and increases the visible light absorption. 1%Ag-TiO2/Mus (1-ATM) exhibits the highest photocatalytic activity. After 100 min, the rhodamine B (RhB) degradation degrees of PT, 150%TiO2/Mus and 1-ATM are 10.4%, 48.6% and 90.6%, respectively. The first-order reaction rate constant of 1-ATM reaches 0.0225 min-1, which is 25 times higher than that of pure TiO2.

2.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232637

ABSTRACT

Anatase/rutile heterojunctions were prepared using the sol-gel method and modified by La/Sn single doping and co-doping. Sn doping promoted the transformation from anatase to rutile, while La doping inhibited the phase transformation. La and Sn co-doping showed an inhibitory effect. The co-doping of La and Sn did not increase visible-light absorption, but exhibited a synergistic effect on inhibiting the recombination of photogenerated electrons and holes, which improved the photocatalytic activity on the basis of single-element modification. The first-order reaction rate constant of La/Sn co-doped sample was 0.027 min-1, which is 1.8 times higher than that of pure TiO2 (0.015 min-1). Meanwhile, the mechanism of photodegradation of methylene blue (MB) by La/Sn co-doped anatase/rutile heterojunctions was discussed through electrochemical measurements and free-radical trapping experiments.


Subject(s)
Lanthanum , Methylene Blue , Catalysis , Tin , Titanium
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955557

ABSTRACT

Photocatalytic degradation of harmful organic matter is a feasible and environmentally friendly method. Bi2WO6 has become a hotspot of photocatalysts because of its unique layered structure and visible light response. In the present study, Sn doping was adopted to modified Bi2WO6 by hydrothermal method. The Sn-doped Bi2WO6 photocatalysts were characterized by XRD, SEM, TEM, BET, XPS, PL, and DRS, respectively. The results show that Sn-doped Bi2WO6 shows three-dimensional (3D) flower-like morphology, which is composed of two-dimensional (2D) nanosheets. Sn4+ ions enter into the Bi2WO6 lattice, producing a degree of Bi2WO6 lattice distortion, which is in favor of reducing the recombination of photogenerated electrons and holes. Moreover, the specific surface area of Bi2WO6 is significantly increased after doping, which is beneficial to providing more active sites. The photocatalytic results show that 2%Sn-Bi2WO6 exhibits the highest photocatalytic activity. After 60 min of irradiation, the photocatalytic degradation degree of methylene blue (MB) increases from 80.6% for pure Bi2WO6 to 92.0% for 2%Sn-Bi2WO6. The first-order reaction rate constant of 2%Sn-Bi2WO6 is 0.030 min-1, which is 1.7 times than that of pure Bi2WO6.


Subject(s)
Bismuth , Tin , Bismuth/chemistry , Catalysis , Light , Tungsten Compounds
4.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35564308

ABSTRACT

Pure and Ag/AgCl-modified titania powders with anatase/rutile/brookite three-phase mixed structure were prepared by one-step hydrothermal method. The effects of Ag/Ti atomic percentages on the structure and photocatalytic performance of TiO2 were investigated. The results showed that pure TiO2 consisted of three phases, anatase, rutile, and brookite, and that Ag addition promoted the transformation from anatase to rutile. When the molar ratio of Ag/Ti reached 4%, the AgCl phase appeared. The addition of Ag had little effect on the optical absorption of TiO2; however, it did favor the separation of photogenerated electrons and holes. The results of photocatalytic experiments showed that after Ag addition, the degradation degree of rhodamine B (RhB) was enhanced. When the molar ratio of Ag/Ti was 4%, Ag/AgCl-modified TiO2 exhibited the highest activity, and the first-order reaction rate constant was 1.67 times higher than that of pure TiO2.

SELECTION OF CITATIONS
SEARCH DETAIL